1
|
Yan Sim X, He N, Mohamed Abdul P, Keong Yeap S, Woh Hui Y, Foong Tiang M, Amru Indera Luthfi A, Fairuz Abdul Manaf S, Adela Bukhari N, Silvamany H, Ping Tan J. Fermentable sugar recovery from durian peel by using ultrasound-assisted chemical pretreatment. ULTRASONICS SONOCHEMISTRY 2024; 104:106811. [PMID: 38394823 PMCID: PMC10906534 DOI: 10.1016/j.ultsonch.2024.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.
Collapse
Affiliation(s)
- Xue Yan Sim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Yew Woh Hui
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Ming Foong Tiang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Adela Bukhari
- Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Hemavathi Silvamany
- Sime Darby Plantation Research, Jalan Pulau Carey, 42960 Pulau Carey, Selangor, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Yuansah SC, Laga A, Pirman. Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Shangdiar S, Lin YC, Ponnusamy VK, Wu TY. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production. BIORESOURCE TECHNOLOGY 2022; 361:127724. [PMID: 35917859 DOI: 10.1016/j.biortech.2022.127724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative renewable energy sources are the future potential energy that will benefit the country's overall energy shortage and demand. The efficient biofuel production depends on the viability of the raw material used. The holistic approach of this study is to establish an integrated bioprocess from lignocellulosic material for biofuel synthesis. Sugar bagasse as one of the waste material, can be economically process for sugar extraction used in biofuel production. In this study, the optimum saccharification rate obtained was 43.62% when the biomass was pretreated at microwave temperature of 100 °C for 15 min with 2.5 g catalyst concentration. The results attained shows that hydrolysis time reduces to approximately 40-50% in compare with other traditional heating method. The sample was analyzed by using UV spectrophotometer and HPLC and computed by using Response Surface Method in MINITAB 17, whereas the structural changes of the residue was detected by using ATR-FTIR and ESEM.
Collapse
Affiliation(s)
- Sumarlin Shangdiar
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Tzi-Yi Wu
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
4
|
Improvement of Enzymatic Saccharification and Ethanol Production from Rice Straw Using Recycled Ionic Liquid: The Effect of Anti-Solvent Mixture. Bioengineering (Basel) 2022; 9:bioengineering9030115. [PMID: 35324804 PMCID: PMC8944977 DOI: 10.3390/bioengineering9030115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major concerns for utilizing ionic liquid on an industrial scale is the cost involved in the production. Despite its proven pretreatment efficiency, expenses involved in its usage hinder its utilization. A better way to tackle this limitation could be overcome by studying the recyclability of ionic liquid. The current study has applied the Box–Behnken design (BBD) to optimize the pretreatment condition of rice straw through the usage of 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) as an ionic liquid. The model predicted the operation condition with 5% solid loading at 128.4 °C for 71.83 min as an optimum pretreatment condition. Under the optimized pretreatment condition, the necessity of the best anti-solvent was evaluated among water, acetone methanol, and their combinations. The study revealed that pure methanol is the suitable choice of anti-solvent, enhancing the highest sugar yield. Recyclability of EMIM-Ac coupled with anti-solvent was conducted up to five recycles following the predicted pretreatment condition. Fermentation studies evaluated the efficacy of recycled EMIM-Ac for ethanol production with 89% more ethanol production than the untreated rice straw even after five recycles. This study demonstrates the potential of recycled ionic liquid in ethanol production, thereby reducing the production cost at the industrial level.
Collapse
|