1
|
Lakhan MN, Hanan A, Wang Y, Lee HK, Arandiyan H. Integrated MXene and metal oxide electrocatalysts for the oxygen evolution reaction: synthesis, mechanisms, and advances. Chem Sci 2024:d4sc04141k. [PMID: 39268209 PMCID: PMC11388099 DOI: 10.1039/d4sc04141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Electrochemical water splitting is a promising approach to produce H2 through renewable electricity, but its energy efficiency is severely constrained by the kinetically slow anodic oxygen evolution reaction (OER), which uses about 90% of the electricity in the water-splitting process due to its multistep proton (H+)-coupled electron (e-) transfer process, high overpotential (η), and low energy efficiency. Therefore, the quest for efficient, sustainable, and cost-effective electrocatalysts for hydrogen production through water electrolysis has intensified, highlighting the potential of two-dimensional (2D) MXenes. MXenes have emerged as a promising class of materials characterized by excellent stability, hydrophilicity, and conductivity. However, challenges such as low oxidation resistance, facile stacking, and the absence of intrinsic catalytically active sites limit their performance. This review thoroughly explores various synthesis methods for MXenes and their integration with transition metal oxides (TMOs) to tackle the challenges and enhance catalytic activity. The review also delves into advanced strategies for structural tuning of MXenes and TMOs, such as termination engineering, heteroatom doping, defect engineering, and the formation of heterojunctions. The integration of MXenes with TMOs has addressed the current limitations of MXenes and significantly boosted OER activity. By considering these structural tuning parameters and limitation factors, researchers can gain insights into the design principles and optimization strategies for MXene- and TMO-integrated electrocatalysts. The review concludes with a summary of the key findings and an outlook on future research directions, emphasizing the unexplored potential and innovative approaches that could further advance the field of electrocatalytic water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne VIC 3000 Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University Selangor 47500 Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne Parkville VIC 3010 Australia
| | - Hiang Kwee Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne VIC 3000 Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University Melbourne VIC 3000 Australia
| |
Collapse
|
2
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, Khan A, Shaheen I, Sajjad U, Mohana Rani G, Javed MS, Khan K, Hanif MB, Assiri MA, Sahoo S, Al Zoubi W, Mohapatra D, Zhang K. Mo-based MXenes: Synthesis, properties, and applications. Adv Colloid Interface Sci 2024; 324:103077. [PMID: 38219341 DOI: 10.1016/j.cis.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| | - Umay Amara
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Irfan Ali Soomro
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Amjad Khan
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, South Korea
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei 10607, Taiwan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| |
Collapse
|
4
|
Aftab U, Solangi MY, Tahira A, Hanan A, Abro MI, Karsy A, Dawi E, Bhatti MA, Alshammari RH, Nafady A, Gradone A, Mazzaro R, Morandi V, Infantes-Molina A, Ibupoto ZH. An advanced PdNPs@MoS 2 nanocomposite for efficient oxygen evolution reaction in alkaline media. RSC Adv 2023; 13:32413-32423. [PMID: 37928849 PMCID: PMC10623383 DOI: 10.1039/d3ra04738e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
In response to the increasing availability of hydrogen energy and renewable energy sources, molybdenum disulfide (MoS2)-based electrocatalysts are becoming increasingly important for efficient electrochemical water splitting. This study involves the incorporation of palladium nanoparticles (PdNPs) into hydrothermally grown MoS2via a UV light assisted process to afford PdNPs@MoS2 as an alternative electrocatalyst for efficient energy storage and conversion. Various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS), were used to investigate the morphology, crystal quality, and chemical composition of the samples. Although PdNPs did not alter the MoS2 morphology, oxygen evolution reaction (OER) activity was driven at considerable overpotential. When electrochemical water splitting was performed in 1.0 M KOH aqueous solution with PdNPs@MoS2 (sample-2), an overpotential of 253 mV was observed. Furthermore, OER performance was highly favorable through rapid reaction kinetics and a low Tafel slope of 59 mV dec-1, as well as high durability and stability. In accordance with the electrochemical results, sample-2 showed also a lower charge transfer resistance, which again provided evidence of OER activity. The enhanced OER activity was attributed to a number of factors, including structural, surface chemical compositions, and synergistic effects between MoS2 and PdNPs.
Collapse
Affiliation(s)
- Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Muhammad Yameen Solangi
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Abdul Hanan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Muhammad Ishaq Abro
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Amal Karsy
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Cairo Egypt
| | - Elmuez Dawi
- Nonlinear Dynamics Research Center (NDRC), Ajman University Ajman P.O. Box 346 United Arab Emirates
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh Jamshoro Jamshoro 76080 Sindh Pakistan
| | - Riyadh H Alshammari
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | | | - Raffaello Mazzaro
- CNR IMM Via Piero Gobetti 101 40129 Bologna Italy
- Department of Physics and Astronomy, University of Bologna Via Berti Pichat 6/2 40127 Bologna Italy
| | | | - Antonia Infantes-Molina
- Department of Inorganic Chemistry, Crystallography and Mineralogy, (Unidad Asociada al ICP-CSIC), Faculty of Sciences, University of Malaga Campus de Teatinos 29071 Malaga Spain
| | - Zafar Hussain Ibupoto
- Dr. M. A. Kazi Institute of Chemistry University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
5
|
Hanan A, Solangi MY, Jaleel Laghari A, Shah AA, Aftab U, Ibupoto ZA, Abro MI, Lakhan MN, Soomro IA, Dawi EA, Al Karim Haj Ismail A, Mustafa E, Vigolo B, Tahira A, Ibupoto ZH. PdO@CoSe 2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 2022; 13:743-755. [PMID: 36683771 PMCID: PMC9809149 DOI: 10.1039/d2ra07340d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.
Collapse
Affiliation(s)
- Abdul Hanan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Muhammad Yameen Solangi
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Abdul Jaleel Laghari
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Aqeel Ahmed Shah
- NED University of Engineering and Technology 75270 Karachi Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Zahoor Ahmed Ibupoto
- Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University Rawalpindi Pakistan
| | - Muhammad Ishaque Abro
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Muhammad Nazim Lakhan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology 100029 Beijing PR China
| | - Elmuez A Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Elfatih Mustafa
- Department of Science and Technology (ITN), Linköping University, Campus Norrköping 60174 Norrköping Sweden
| | | | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | | |
Collapse
|
6
|
Manojkumar K, Kandeeban R, Brindha R, Sangeetha V, Saminathan K. Non-precious metal-based integrated electrodes for overall alkaline water splitting. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
8
|
Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|