1
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Moharana M, Pattanayak SK, Khan F. Bioactive compounds from Pandanous fascicularis as potential therapeutic candidate to tackle hepatitis a inhibition: Docking and molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:10478-10494. [PMID: 36541128 DOI: 10.1080/07391102.2022.2158940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Due to extensive pharmacological research, medicinal plants the underpinning of indigenous herbal serve as a possible source of key compounds for the development of new drugs. Hepatitis A, one of the most widespread infectious diseases associated with global public health issues. The transmission of hepatitis A virus (HAV) occurs, through personal contact, as well as contaminated food/water. The HAV 3C cysteine protease is a non-structural protein, plays pivotal role in proliferation and viral replication. Significant phytochemicals of Pandanous fascicularis include phytosterol, kobusin, epipinoresinol, and ceroptene, which have a wide variety of biological functions. Through ADMET investigation, we have screened fifteen phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HAV 3C protease which signifies the phytochemicals phytosterol, kobusin, epipinoresinol, and ceroptene have a significant capability to bind with hepatitis A virus protein.The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, H-bond number, and principal component analysis through 100 ns MD simulations. The molecular dynamics study reveals that, all four phytochemicals possess considerable binding efficacy with hepatitis A virus protein. Based on our computational study and MMGBSA calculations, phytosterol, kobusin and epipinoresinol phytochemicals may be a potential drug candidate for inhibition of hepatitis A. The potential therapeutic characteristics of the phytochemicals against hepatitis A inhibition offer additional support for the in vitro and in vivo studies in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
3
|
Chen X, Leyendecker S, van den Bedem H. SARS-CoV-2 main protease mutation analysis via a kinematic method. Proteins 2023; 91:1496-1509. [PMID: 37408369 DOI: 10.1002/prot.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. COVID-19 continues to cause millions of deaths globally in part due to immune-evading mutations. SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication and potentially an effective drug target. Mutations affect the dynamics of enzymes and thereby their activity and ability to bind ligands. Here, we use kinematic flexibility analysis (KFA) to identify how mutations and ligand binding changes the conformational flexibility of Mpro. KFA decomposes macromolecules into regions of different flexibility near-instantly from a static structure, allowing conformational dynamics analysis at scale. Altogether, we analyzed 47 mutation sites across 69 Mpro-ligand complexes resulting in more than 3300 different structures which includes 69 mutated structures with all 47 sites mutated simultaneously and 3243 single residue mutated structures. We found that mutations generally increased the conformational flexibility of the protein. Understanding the impact of mutations on the flexibility of Mpro is essential for identifying potential drug targets in the treatment of SARS-CoV-2. Further studies in this area can offer valuable insights into the mechanisms of molecular recognition.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Mechanical Engineering, Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrid Leyendecker
- Department of Mechanical Engineering, Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
5
|
Arumugam M, Manikandan DB, Marimuthu SK, Muthusamy G, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluating Biofilm Inhibitory Potential in Fish Pathogen, Aeromonas hydrophila by Agricultural Waste Extracts and Assessment of Aerolysin Inhibitors Using In Silico Approach. Antibiotics (Basel) 2023; 12:antibiotics12050891. [PMID: 37237796 DOI: 10.3390/antibiotics12050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.
Collapse
Affiliation(s)
- Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli 620024, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
6
|
Moharana M, Pattanayak SK, Khan F. Molecular recognition of bio-active triterpenoids from Swertia chirayita towards hepatitis Delta antigen: a mechanism through docking, dynamics simulation, Gibbs free energy landscape. J Biomol Struct Dyn 2023; 41:14651-14664. [PMID: 36856037 DOI: 10.1080/07391102.2023.2184173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Medicinal plants the underpinning of indigenous herbal serve, are the possible source of key compounds for the development of new drugs. Hepatitis D, one of the most widespread infectious diseases associated with global public health issues. Therefore, we aim to screen natural compounds to find out potent inhibitor towards hepatitis delta antigen. Through ADMET investigation, we have screened twenty phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HDV protease which signifies the phytochemicals beta-amyrin, chiratenol, episwertenol and swertanone have a significant capability to bind with hepatitis D virus protein. The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, Hbond number, and principal component analysis through 100 ns MD simulations. Based on our principal component analysis, beta-amyrin, chiratenol, episwertenol and swertanone phytochemicals can be a potential drug candidates for inhibition of hepatitis D. The above observation is also supported by our Gibbs free energy landscape study. The potential therapeutic characteristics of the phytochemicals against hepatitis D inhibition offer additional support for the in vitro and in vivo studies in future.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
7
|
Moharana M, Pattanayak SK, Khan F. Computational efforts to identify natural occurring compounds from phyllanthus niruri that target hepatitis B viral infections: DFT, docking and dynamics simulation study. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Moharana M, Pattanayak SK, Khan F. Identification of phytochemicals from Eclipta alba and assess their potentiality against Hepatitis C virus envelope glycoprotein: virtual screening, docking, and molecular dynamics simulation study. J Biomol Struct Dyn 2022:1-17. [PMID: 35694813 DOI: 10.1080/07391102.2022.2085804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatitis C virus has a major role in spreading chronic liver disease and hepatocellular carcinoma. Factors such as high costs, pharmacological side effects, and the development of drug resistance strains require the development of new and potentially effective antiviral to treat the various stages of Hepatitis C. Bioactive chemicals have been extracted from medicinal plants and are utilized by humans for the goal of maintaining a healthy lifestyle. The goal of this work is to recognize phytochemicals from Eclipta alba and assess their potentiality activity against the hepatitis C virus envelope glycoprotein using in silico approaches. Phytochemicals from Eclipta alba were virtually screened by Auto dock raccoon and 12 compounds were selected for molecular docking to probe the active binding site. The top two compounds based on the binding score like ecliptalbine and oleanolic acid with HCV E2 glycoprotein exhibit binding energy -8.88 and -8.02 kcal/mol, respectively. The chemicals' usefulness was reinforced by positive pharmacokinetic data. The phytocompounds were identified as potent HCV inhibitors based on the drug likeness and ADMET properties. Both ecliptalbine and oleanolic acid underwent molecular dynamics simulations to determine features such as RMSD, RMSF, SASA, hydrogen-bond number, and MM-PBSA-based binding free energy. From the molecular docking and molecular dynamics simulation study revealed that oleanolic acid obtained from Eclipta alba can be used as inhibitors against Hepatitis C. The identified inhibitor from our study will be study in vitro and in vivo studies to check their efficacy against Hepatitis C.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|