1
|
Saadh MJ, Makasana J, Ballal S, R R, Verma L, Pathak PK, Saud HR, Saini S, Bhakuni PN, Sead FF. Advanced functionalized chitosan nanocomposites for hyperthermia-based cancer therapy. Med Oncol 2025; 42:208. [PMID: 40353916 DOI: 10.1007/s12032-025-02768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Chitosan-based nanocomposites have emerged as promising platforms in hyperthermia-mediated cancer therapy due to their unique physicochemical properties, biocompatibility, and functional versatility. This review highlights recent advances in the design and application of chitosan-functionalized nanoparticles (NPs), focusing on their role in enhancing targeted hyperthermic treatment. The integration of chitosan with various nanomaterials-including magnetic nanoparticles, carbon-based structures such as graphene and carbon nanotubes, and gold nanoparticles-offers distinct advantages in thermal conversion efficiency, tumor specificity, and drug delivery potential. Magnetic nanoparticles allow precise thermal ablation of cancer cells under an external magnetic field, while carbon-based materials provide superior thermal conductivity for efficient heat generation. Gold nanoparticles, when conjugated with chitosan, improve biocompatibility and enable surface modification for targeted therapy. Despite promising preclinical outcomes, challenges remain in terms of toxicity, long-term stability, regulatory approval, and scalable synthesis. This review critically examines these aspects and outlines future directions for optimizing chitosan-based nanocomposites toward clinical translation and commercial viability in cancer hyperthermia therapy.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Jayanti Makasana
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lokesh Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Haider Radhi Saud
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Suman Saini
- Department of Allied Science, Graphic Era Hill University, Bhimtal, India
| | | | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Giannopoulos GI. Fullerene Derivatives for Drug Delivery against COVID-19: A Molecular Dynamics Investigation of Dendro[60]fullerene as Nanocarrier of Molnupiravir. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152711. [PMID: 35957142 PMCID: PMC9370322 DOI: 10.3390/nano12152711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 05/27/2023]
Abstract
In this paper, a theoretical investigation is made regarding the possibility of using a water-soluble derivative of C60 as a drug delivery agent for treating Coronavirus disease 2019 (COVID-19). Molnupiravir is chosen as the transporting pharmaceutical compound since it has already proved to be very helpful in saving lives in case of hospitalization. According to the proposed formulation, a carboxyfullerene known as dendro[60]fullerene is externally connected with two molnupiravir molecules. Two properly formed nitrogen single bonds (N-N) are used as linkers between the dendro[60]fullerene and the two molnupiravir molecules to create the final form of the C60 derivate/molnupiravir conjugate. The energetics of the developed molecular system and its interaction with water and n-octanol are extensively studied via classical molecular dynamics (MD) using the COMPASS II force field. To study the interactions with water and n-octanol, an appropriate periodic amorphous unit cell is created that contains a single C60 derivative/molnupiravir system surrounded by numerous solvent molecules and simulated via MD in room conditions. In addition, the corresponding solvation-free energies of the investigated drug delivery system are computed and set in contrast with the corresponding properties of the water-soluble dendro[60]fullerene, to test its solubility capabilities.
Collapse
Affiliation(s)
- Georgios I Giannopoulos
- Department of Mechanical Engineering, University of Peloponnese, 1 Megalou Alexandrou Street, GR-26334 Patras, Greece
| |
Collapse
|