1
|
Massey I, Yadav S, Kumar D, Maharia RS, Kumari K, Singh P. An insight for the inhibition of anxiolytic and anti-convulsant effects in zebrafish using the curcumins via exploring molecular docking and molecular dynamics simulations. Mol Divers 2025; 29:439-455. [PMID: 38758508 DOI: 10.1007/s11030-024-10865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
In the contemporary landscape, anxiety and seizures stand as major areas of concern, prompting researchers to explore potential drugs against them. While numerous drugs have shown the potential to treat these two neurological conditions, certain adverse effects emphasize the need for development of safer alternatives. This study seeks to employ an in silico approach to evaluate natural compounds, particularly curcumins, as potential inhibitors of GABA-AT to mitigate anxiety and seizures. The proposed methodology includes generating a compound library, minimizing energy, conducting molecular docking using AutoDock, molecular dynamics simulations using Amber, and MM-GBSA calculations. Remarkably, CMPD50 and CMPD88 exhibited promising binding affinities of - 9.0 kcal/mol and - 9.1 kcal/mol with chains A and C of GABA-AT, respectively. Further, MM-GBSA calculations revealed binding free energies of - 10.88 kcal/mol and - 10.72 kcal/mol in CMPD50 and CMPD88, respectively. ADME analysis showed that these compounds contain drug-likeness properties and might be considered as potential drug candidates. The findings from this study will have practical applications in the field of drug discovery for the development of safer and effective drugs for treatment of anxiety and seizures. Overall, this study will lay the groundwork for providing valuable insights into the potential therapeutic effects of curcumins in alleviating anxiety and seizures, establishing a computational framework for future experimental validation.
Collapse
Affiliation(s)
- Iona Massey
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India.
| | - Ram Swaroop Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Arafa FM, Hezema NN, Aljuhani A, Aouad MR, Hagar M, Zakaria A, Rezki N, Shaaban MM, Salam SAA. Isatin-1,2,3-triazole derivatives: Synthesis, molecular docking and evaluation against acute experimental toxoplasmosis. Acta Trop 2024; 260:107471. [PMID: 39542154 DOI: 10.1016/j.actatropica.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Toxoplasmosis remains a challenge for both public health and animal husbandry which created a constant demand to develop novel compounds using innovative methods. To join this relentless quest for an ideal chemotherapeutic agent, herein, we developed newly synthesized isatin-1,2,3-triazole derivatives. Three compounds (5a, 5b and 5c) were synthesized, characterized, loaded on chitosan nanoparticles (CNPs) and then evaluated accordingly. Initially, a molecular docking study was carried out which revealed the effective interaction with the target enzymes; purine nucleoside phosphorylase (PNPase) and T. gondii calcium-dependent protein kinase-1 (TgCDPK1). This was further substantiated by in vivo evaluation of the three compounds (5a-c) and their nanoformulae (5a-CNPs, 5b-CNPs, and 5c-CNPs) against acute Toxoplasma gondii infection in murine model. It is worthy of note that all tested compounds and their nanoformulae produced a statistically significant reduction of parasite burden in both peritoneal fluid and liver impression smear and profound ultrastructural alterations, detected by scanning electron microscopy, compared to the infected non-treated control. The nanoformula 5c-CNPs yielded the most outstanding results with the highest tachyzoite reduction percentage in both peritoneal fluid (98.1%) and liver impression smear (95.3%). Furthermore, the serum levels of liver enzymes (aspartate transaminase (AST) and alanine transaminase (ALT), and renal function tests (urea and creatinine) in mice were within normal limits which makes them more appealing candidates with proven safety. To the best of our knowledge, the present work is the first in silico and in vivo study proving the anti-Toxoplasma effect of isatin-1,2,3- triazoles which paves the way for further development of isatin and triazole-based leads for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt.
| | - Nehal N Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt
| | - Ateyatallah Aljuhani
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt; Department of Chemistry, Faculty of Advanced Basic Sciences, Alamein International University, Alamein City, Matrouh, Egypt
| | - Ahmed Zakaria
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Sara A Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt
| |
Collapse
|
3
|
Yadav S, Aslam M, Prajapat A, Massey I, Nand B, Kumar D, Kumari K, Pandey G, Verma C, Singh P, AlFantazi A. Investigate the binding of pesticides with the TLR4 receptor protein found in mammals and zebrafish using molecular docking and molecular dynamics simulations. Sci Rep 2024; 14:24504. [PMID: 39424974 PMCID: PMC11489667 DOI: 10.1038/s41598-024-75527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The widespread use of pesticides poses significant threats to both environmental and human health, primarily due to their potential toxic effects. The study investigated the cardiovascular toxicity of selected pesticides, focusing on their interactions with Toll-like receptor 4 (TLR4), an important part of the innate immune system. Using computational tools such as molecular docking, molecular dynamics (MD) simulations, principal component analysis (PCA), density functional theory (DFT) calculations, and ADME analysis, this study identified C160 as having the lowest binding affinity (-8.2 kcal/mol), followed by C107 and C165 (-8.0 kcal/mol). RMSD, RMSF, Rg, and hydrogen bond metrics indicated the formation of stable complexes between specific pesticides and TLR4. PCA revealed significant structural changes upon ligand binding, affecting stability and flexibility, while DFT calculations provided information about the stability, reactivity, and polarity of the compounds. ADME studies highlighted the solubility, permeability, and metabolic stability of C107, C160, and C165, suggesting their potential for bioavailability and impact on cardiovascular toxicity. C107 and C165 exhibit higher bioactivity scores, indicating favourable absorption, metabolism, and distribution properties. C165 also violated rule where molecular weight is greater than 500 g/mol. Further, DFT and NCI analysis of post MD conformations confirmed the binding of ligands at the binding pocket. The analysis shed light on the molecular mechanisms of pesticide-induced cardiovascular toxicity, aiding in the development of strategies to mitigate their harmful effects on human health.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Ayushi Prajapat
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Iona Massey
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi-110007, India.
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Chandrabhan Verma
- Department of Petroleum and Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Akram AlFantazi
- Department of Petroleum and Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Kumar V, Bhukal A, Raman APS, Singh P, Lal K. Synthesis, Characterization, Antimicrobial and In Silico Studies of Isatin Schiff Base Linked 1,2,3-Triazole Hybrids. Chem Biodivers 2024; 21:e202400569. [PMID: 38770783 DOI: 10.1002/cbdv.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
A new series of isatin-Schiff base linked 1,2,3-triazole hybrids has been synthesized using CuAAC approach from (E)-3-(phenylimino)-1-(prop-2-yn-1-yl)indolin-2-one derivatives in high yield (73-91 %). These synthesized derivatives were characterized using FT-IR, 1H NMR, 13C NMR, 2D-NMR and HRMS spectral techniques. The in vitro antimicrobial activity assay demonstrated that most of the tested hybrids exhibited promising activity. Compound 5 j displayed significant antibacterial efficacy against P. aeruginosa and B. subtilis with MIC value of 0.0062 μmol/mL. While, 5 j also showed better antifungal potency against A. niger with MIC value of 0.0123 μmol/mL. The docking studies of most promising compounds were performed with the well-known antibacterial and antifungal targets i. e. 1KZ1, 5TZ1. Molecular modelling investigations demonstrated that hybrids 5 h and 5 l exhibited good interactions with 1KZN and 5TZ1, with binding energies of -9.6 and -11.0 kcal/mol, respectively. Further, molecular dynamics studies of the compounds showing promising binding interactions were also carried out to study the stability of complexes of these hybrids with both the targets.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Akanksha Bhukal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | | | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
5
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
6
|
Siddique F, Anwaar A, Bashir M, Nadeem S, Rawat R, Eyupoglu V, Afzal S, Bibi M, Bin Jardan YA, Bourhia M. Revisiting methotrexate and phototrexate Zinc15 library-based derivatives using deep learning in-silico drug design approach. Front Chem 2024; 12:1380266. [PMID: 38576849 PMCID: PMC10991842 DOI: 10.3389/fchem.2024.1380266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Cancer is the second most prevalent cause of mortality in the world, despite the availability of several medications for cancer treatment. Therefore, the cancer research community emphasized on computational techniques to speed up the discovery of novel anticancer drugs. Methods: In the current study, QSAR-based virtual screening was performed on the Zinc15 compound library (271 derivatives of methotrexate (MTX) and phototrexate (PTX)) to predict their inhibitory activity against dihydrofolate reductase (DHFR), a potential anticancer drug target. The deep learning-based ADMET parameters were employed to generate a 2D QSAR model using the multiple linear regression (MPL) methods with Leave-one-out cross-validated (LOO-CV) Q2 and correlation coefficient R2 values as high as 0.77 and 0.81, respectively. Results: From the QSAR model and virtual screening analysis, the top hits (09, 27, 41, 68, 74, 85, 99, 180) exhibited pIC50 ranging from 5.85 to 7.20 with a minimum binding score of -11.6 to -11.0 kcal/mol and were subjected to further investigation. The ADMET attributes using the message-passing neural network (MPNN) model demonstrated the potential of selected hits as an oral medication based on lipophilic profile Log P (0.19-2.69) and bioavailability (76.30% to 78.46%). The clinical toxicity score was 31.24% to 35.30%, with the least toxicity score (8.30%) observed with compound 180. The DFT calculations were carried out to determine the stability, physicochemical parameters and chemical reactivity of selected compounds. The docking results were further validated by 100 ns molecular dynamic simulation analysis. Conclusion: The promising lead compounds found endorsed compared to standard reference drugs MTX and PTX that are best for anticancer activity and can lead to novel therapies after experimental validations. Furthermore, it is suggested to unveil the inhibitory potential of identified hits via in-vitro and in-vivo approaches.
Collapse
Affiliation(s)
- Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmar Anwaar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Bashir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Southern Punjab Institute of Health Sciences, Multan, Pakistan
| | - Sumaira Nadeem
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, India
| | - Volkan Eyupoglu
- Department of Chemistry, Cankırı Karatekin University, Cankırı, Türkiye
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
7
|
Fang X, Han J, Lou X, Lv Y, Zhang Y, Xu X, Lv Z, Lu G. Effect and Mode of Different Concentrations of Citrus Peel Extract Treatment on Browning of Fresh-Cut Sweetpotato. Foods 2023; 12:3855. [PMID: 37893748 PMCID: PMC10606584 DOI: 10.3390/foods12203855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Browning is one of the main phenomena limiting the production of fresh-cut sweetpotatoes. This study investigated the anti-browning effect of citrus peel extracts and the key components and modes of action associated with browning in fresh-cut sweetpotatoes. Five different concentrations of citrus peel extract (1, 1.5, 2, 2.5 and 3 g/L) were selected to ensure storage quality; and the physical and chemical properties of fresh-cut sweetpotato slices were analysed. A concentration of 2 g/L of citrus peel extract significantly inhibited the browning of fresh-cut sweetpotatoes. The results showed that the browning index and textural characteristics of fresh-cut sweetpotatoes improved significantly after treatment with citrus peel extract; all the citrus peel extract solutions inhibited browning to some extent compared to the control. In addition; LC-IMS-QTOFMS analysis revealed a total of 1366 components in citrus peel extract; the evaluation of citrus peel extract monomeric components that prevent browning in fresh-cut sweetpotato indicated that the components with better anti-browning effects were citrulloside, hesperidin, sage secondary glycosides, isorhamnetin and quercetin. The molecular docking results suggest that citrullosides play a key role in the browning of fresh-cut sweetpotatoes. In this study, the optimum amount of citrus peel extract concentration was found to be 2 g/L.
Collapse
Affiliation(s)
- Xiugui Fang
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; (X.F.); (Y.L.)
| | - Jiahui Han
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.H.)
| | - Xuefen Lou
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.H.)
| | - You Lv
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; (X.F.); (Y.L.)
| | - Yilu Zhang
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Ximing Xu
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Zunfu Lv
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Guoquan Lu
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| |
Collapse
|
8
|
Arumugam M, Manikandan DB, Marimuthu SK, Muthusamy G, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluating Biofilm Inhibitory Potential in Fish Pathogen, Aeromonas hydrophila by Agricultural Waste Extracts and Assessment of Aerolysin Inhibitors Using In Silico Approach. Antibiotics (Basel) 2023; 12:antibiotics12050891. [PMID: 37237796 DOI: 10.3390/antibiotics12050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.
Collapse
Affiliation(s)
- Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli 620024, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|