1
|
Avery J, Kim SR, Cheng W, Foss F, Girardi M. FISH Panel for Leukemic Cutaneous T-Cell Lymphoma: Extended Patient Cohort Correlation with Blood Involvement and Clinical Outcomes. JID INNOVATIONS 2023; 3:100212. [PMID: 37674691 PMCID: PMC10477749 DOI: 10.1016/j.xjidi.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 09/08/2023] Open
Abstract
The genomic basis of cutaneous T-cell lymphoma has been characterized by gene copy number alterations and genomic sequencing, but there are few clinical tests that are being widely used to inform the diagnosis and prognosis of leukemic cutaneous T-cell lymphoma that may arise as a progression from mycosis fungoides or de novo as Sézary syndrome. An 11-gene FISH panel of TP53, RB1, DNMT3A, FAS, ZEB1, ARID1A, ATM, and CDKN2A deletions and MYC, signal transducer and activator of transcription gene (STAT)3/5B, and CARD11 amplifications was previously found to encapsulate >95% of gene copy number variations in leukemic cutaneous T-cell lymphoma. Through a retrospective analysis of patients with leukemic cutaneous T-cell lymphoma seen at the Yale Cancer Center from 2014 to 2020, we gathered the relevant genes as they became available and correlated them to factors with prognostic relevance as a proof of concept to show the potential utility in further developing a limited gene panel for prognosis. In this study, we show that the abnormal FISH results show an association with clinically relevant factors (blood stage, CD4:8 ratio, and percentage blood involvement) and have a nonsignificant statistical trend (>90%) toward correlation with overall survival. In addition, the previous cost-effective panels were signal transducer and activator of transcription (STAT)3/5B, MYC, TP53, and ARID1A. We now suggest adding RB1 and ZEB1 on the basis of our findings.
Collapse
Affiliation(s)
- Jonathan Avery
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Sa Rang Kim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wei Cheng
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Francine Foss
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2021; 139:15-33. [PMID: 34570882 DOI: 10.1182/blood.2019004256] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Primary cutaneous T-cell lymphomas (CTCL) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years significant progress has been made in the understanding of the pathogenesis of CTCL. Progress in CTCL classifications combined with technical advances, in particular next generation sequencing (NGS), enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCL. The identified alterations in particular involve epigenetic remodelling, cell cycle regulation, and the constitutive activation of targetable, oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme, however not universal for all CTCL and with seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of CTCL patients. In the present review the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCL.
Collapse
|
3
|
Abstract
Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.
Collapse
|
4
|
JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL. Blood Adv 2021; 4:2213-2226. [PMID: 32437546 DOI: 10.1182/bloodadvances.2020001756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing T lymphocytes that is more likely to involve the peripheral blood in advanced stages. For such patients with advanced disease, there are few available systemic treatment options, and prognosis remains poor. Exome sequencing studies of CTCL have suggested therapeutic targets, including within the JAK/STAT pathway, but JAK inhibition strategies may be limited by patient-specific mutational status. Because our recent research has highlighted the potential roles of single and combination approaches specifically using BCL2, bromodomain and extra-terminal domain (BET), and histone deacetylase (HDAC) inhibition, we aimed to investigate the effects of JAK inhibition on CTCL cells and established CTCL cell lines when paired with these and other targeting agents. Peripheral blood malignant CTCL isolates exhibited differential responses to JAK inhibition, with JAK2 expression levels negatively correlating to 50% inhibitory concentration (IC50) values. Regardless of single-agent sensitivity, JAK inhibition potentiated malignant cell cytotoxicity in combination with BCL2, BET, HDAC, or proteasome inhibition. Combination inhibition of JAK and BCL2 showed the strongest potentiation of CTCL cytotoxicity, driven by both intrinsic and extrinsic apoptosis pathways. JAK inhibition decreased expression of BCL2 in the high-responder samples, suggesting a putative mechanism for this combination activity. These results indicate that JAK inhibition may have major effects on CTCL cells, and that combination strategies using JAK inhibition may allow for more generalized cytotoxic effects against the malignant cells from patients with CTCL. Such preclinical assessments help inform prioritization for combination targeted drug approaches for clinical utilization in the treatment of CTCL.
Collapse
|
5
|
Stadler R, Hain C, Cieslak C, Stranzenbach R. Molecular pathogenesis of cutaneous lymphoma-Future directions. Exp Dermatol 2020; 29:1062-1068. [PMID: 33090576 DOI: 10.1111/exd.14211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
The pathogenesis of cutaneous T-cell lymphomas is not clear. In recent years, the genetic changes in CTCL were explored. The detected mutations showed a great deal of heterogeneity between individual patients. The studies documented various copy number variations (CNV) and single nucleotide variations (SNV) in multiple genes involved in multiple signalling pathways. Recurrently mutated signalling pathways include JAK-STAT, MAPK, T-cell receptor, TNF receptor and NFκB signalling. In the period between 2018 and today, additional studies towards the genetic changes in CTCL were carried out. Genetic changes in gamma delta T-cell lymphoma are also shown in genes of the JAK-STAT, MAPK, MYC and chromatin signalling pathways. These studies might indicate a shift away from targeted sequencing approaches towards whole-genome sequencing. This approach demands additional resources in terms of funding but has the advantage of finding mutations in non-coding regions. These mutations were neglected for a long time, but as shown in contemporary research these regions harbour highly recurrent mutations affecting gene expression and regulation. Nevertheless, the detection of specific molecular changes in known pathways enables considerations for targeted therapies.
Collapse
Affiliation(s)
- Rudolf Stadler
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - Carsten Hain
- Center of Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Cassandra Cieslak
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - René Stranzenbach
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| |
Collapse
|
6
|
Yumeen S, Mirza FN, Lewis JM, Carlson KR, King B, Cowper S, Bunick CG, McNiff J, Girardi M. CD8 + mycosis fungoides palmaris et plantaris with peripheral blood involvement. JAAD Case Rep 2020; 6:434-437. [PMID: 32382639 PMCID: PMC7200192 DOI: 10.1016/j.jdcr.2020.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sara Yumeen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Fatima N Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Brett King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Shawn Cowper
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Jennifer McNiff
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Insights Into the Molecular and Cellular Underpinnings of Cutaneous T Cell Lymphoma. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:111-121. [PMID: 32226341 PMCID: PMC7087059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a rare malignancy of skin-homing T lymphocytes. Advances in whole exome sequencing have identified a vast number of both single nucleotide variants (SNVs) and genomic copy number alterations (GCNAs) as driver mutations present in CTCL cells. These alterations cluster within several key pathways - T cell/NF-κB/JAK-STAT activation, cell cycle dysregulation/apoptosis, and DNA structural dysregulation affecting gene expression - allowing the maintenance of a population of proliferating, activated malignant T lymphocytes. While much of the clinical spectrum, genetic alterations, and oncogenic behavior of CTCL have been elucidated, little is known about the etiology that underlies CTCL malignant transformation and progression. Herein, we review the epidemiology, clinical presentation, and pathophysiology of CTCL to provide a perspective on CTCL pathogenesis. We outline a series of alterations by which mature, activated T lymphocytes are endowed with apoptosis resistance and cutaneous persistence. Subsequent genomic alterations including the loss of chromosomal structural controls further promote proliferation and constitutive T cell activation. CTCL cells are both malignant cells and highly functional T cells that can have major cutaneous and immunologic effects on the patient, including the suppression of cell-mediated immunity that facilitates malignant cell expansion. A deeper understanding of the molecular and cellular underpinnings of CTCL can help guide clinical management as well as inform prognosis and therapeutic discovery.
Collapse
|
8
|
Abstract
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) with a median life expectancy of less than 4 years. Although initial treatment responses are often good, the vast majority of patients with SS fail to respond to ongoing therapy. We hypothesize that malignant T cells are highly heterogeneous and harbor subpopulations of SS cells that are both sensitive and resistant to treatment. Here, we investigate the presence of single-cell heterogeneity and resistance to histone deacetylase inhibitors (HDACi) within primary malignant T cells from patients with SS. Using single-cell RNA sequencing and flow cytometry, we find that malignant T cells from all investigated patients with SS display a high degree of single-cell heterogeneity at both the mRNA and protein levels. We show that this heterogeneity divides the malignant cells into distinct subpopulations that can be isolated by their expression of different surface antigens. Finally, we show that treatment with HDACi (suberanilohydroxamic acid and romidepsin) selectively eliminates some subpopulations while leaving other subpopulations largely unaffected. In conclusion, we show that patients with SS display a high degree of single-cell heterogeneity within the malignant T-cell population, and that distinct subpopulations of malignant T cells carry HDACi resistance. Our data point to the importance of understanding the heterogeneous nature of malignant SS cells in each individual patient to design combinational and new therapies to counter drug resistance and treatment failure.
Collapse
|
9
|
Kim SR, Lewis JM, Cyrenne BM, Monico PF, Mirza FN, Carlson KR, Foss FM, Girardi M. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget 2018; 9:29193-29207. [PMID: 30018745 PMCID: PMC6044378 DOI: 10.18632/oncotarget.25670] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
While several systemic therapies are approved for cutaneous T cell lymphoma (CTCL), a non-Hodgkin lymphoma of skin-homing T cells that may involve lymph nodes and peripheral blood in advanced stages, relapses are common. Mutational analysis of CTCL cells has revealed frequent amplification of the MYC oncogene, and bromodomain and extraterminal (BET) protein inhibitors have been shown to repress MYC expression in various malignancies. Towards a potential novel therapy, we thus sought to examine the effect of BET inhibition on CTCL cells in vitro. Each of the four tested BET inhibitors (JQ1, ABBV-075, I-BET762, CPI-0610) consistently induced dose-dependent decreases in viability of isolated patient-derived CTCL cells and established CTCL cell lines (MyLa, Sez4, HH, Hut78). This effect was synergistically potentiated by combination of BET inhibition with BCL2 inhibition (e.g. venetoclax) or histone deacetylase (HDAC) inhibition (e.g. vorinostat or romidepsin). There was also a marked increase in caspase 3/7 activation when JQ1 was combined with either vorinostat or romidepsin, confirming that the observed synergies are due in major part to induction of apoptosis. Furthermore, MYC and BCL2 expression were each synergistically repressed when CTCL cells were treated with JQ1 plus HDAC inhibitors, suggesting cooperative activities at the level of epigenetic regulation. Taken together, these data indicate that targeting BET proteins in CTCL represents a promising novel therapeutic strategy that may be substantially potentiated by combination with BCL2 or HDAC inhibition.
Collapse
Affiliation(s)
- Sa Rang Kim
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benoit M Cyrenne
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Patrick F Monico
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fatima N Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Francine M Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients. Blood 2017; 130:2073-2083. [PMID: 28972015 DOI: 10.1182/blood-2017-06-792150] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
The presence and degree of peripheral blood involvement in patients with cutaneous T-cell lymphoma (CTCL) portend a worse clinical outcome. Available systemic therapies for CTCL may variably decrease tumor burden and improve quality of life, but offer limited effects on survival; thus, novel approaches to the treatment of advanced stages of this non-Hodgkin lymphoma are clearly warranted. Mutational analyses of CTCL patient peripheral blood malignant cell samples suggested the antiapoptotic mediator B-cell lymphoma 2 (BCL2) as a potential therapeutic target. To test this, we developed a screening assay for evaluating the sensitivity of CTCL cells to targeted molecular agents, and compared a novel BCL2 inhibitor, venetoclax, alone and in combination with a histone deacetylase (HDAC) inhibitor, vorinostat or romidepsin. Peripheral blood CTCL malignant cells were isolated from 25 patients and exposed ex vivo to the 3 drugs alone and in combination, and comparisons were made to 4 CTCL cell lines (Hut78, Sez4, HH, MyLa). The majority of CTCL patient samples were sensitive to venetoclax, and BCL2 expression levels were negatively correlated (r = -0.52; P =018) to 50% inhibitory concentration values. Furthermore, this anti-BCL2 effect was markedly potentiated by concurrent HDAC inhibition with 93% of samples treated with venetoclax and vorinostat and 73% of samples treated with venetoclax and romidepsin showing synergistic effects. These data strongly suggest that concurrent BCL2 and HDAC inhibition may offer synergy in the treatment of patients with advanced CTCL. By using combination therapies and correlating response to gene expression in this way, we hope to achieve more effective and personalized treatments for CTCL.
Collapse
|
11
|
Gros A, Laharanne E, Vergier M, Prochazkova-Carlotti M, Pham-Ledard A, Bandres T, Poglio S, Berhouet S, Vergier B, Vial JP, Chevret E, Beylot-Barry M, Merlio JP. TP53 alterations in primary and secondary Sézary syndrome: A diagnostic tool for the assessment of malignancy in patients with erythroderma. PLoS One 2017; 12:e0173171. [PMID: 28301507 PMCID: PMC5354275 DOI: 10.1371/journal.pone.0173171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Recent massive parallel sequencing data have evidenced the genetic diversity and complexity of Sézary syndrome mutational landscape with TP53 alterations being the most prevalent genetic abnormality. We analyzed a cohort of 35 patients with SS and a control group of 8 patients with chronic inflammatory dermatoses. TP53 status was analyzed at different clinical stages especially in 9 patients with a past-history of mycosis fungoides (MF), coined secondary SS. TP53 mutations were only detected in 10 patients with either primary or secondary SS (29%) corresponding to point mutations, small insertions and deletions which were unique in each case. Interestingly, TP53 mutations were both detected in sequential unselected blood mononuclear cells and in skin specimens. Cytogenetic analysis of blood specimens of 32 patients with SS showed a TP53 deletion in 27 cases (84%). Altogether 29 out of 35 cases exhibited TP53 mutation and/or deletion (83%). No difference in prognosis was observed according to TP53 status while patients with secondary SS had a worse prognosis than patients with primary SS. Interestingly, patients with TP53 alterations displayed a younger age and the presence of TP53 alteration at initial diagnosis stage supports a pivotal oncogenic role for TP53 mutation in SS as well as in erythrodermic MF making TP53 assessment an ancillary method for the diagnosis of patients with erythroderma as patients with inflammatory dermatoses did not display TP53 alteration.
Collapse
Affiliation(s)
- Audrey Gros
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Elodie Laharanne
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Marie Vergier
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | | | - Anne Pham-Ledard
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Dermatology Department, CHU de Bordeaux, Bordeaux, France
| | - Thomas Bandres
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Sandrine Poglio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Sabine Berhouet
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Béatrice Vergier
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Pathology Department, CHU de Bordeaux, Pessac, France
| | | | - Edith Chevret
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Dermatology Department, CHU de Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| |
Collapse
|