1
|
Yoneyama F, Okamoto T, Hamaya T, Kodama H, Fujita N, Yamamoto H, Imai A, Hatakeyama S. Penile metastasis from a duodenal gastrointestinal stromal tumor: A rare case report. Urol Case Rep 2025; 59:102978. [PMID: 40034263 PMCID: PMC11872612 DOI: 10.1016/j.eucr.2025.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Penile metastases are rare, and metastasis of a gastrointestinal stromal tumor (GIST) to the penis is exceedingly uncommon. An 81-year-old man with a history of duodenal GIST, initially treated with curative resection and tyrosine kinase inhibitor therapy for liver metastasis, presented with an enlarging penile mass. A biopsy confirmed penile metastasis from GIST. To relieve his symptoms, a total penectomy was performed. Molecular testing revealed a KIT exon 9 mutation and CDKN2A/B gene alterations, indicating aggressive tumor behavior and resistance to standard treatment. This case underscores the importance of recognizing atypical metastatic sites in GIST.
Collapse
Affiliation(s)
- Fumiya Yoneyama
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Teppei Okamoto
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tomoko Hamaya
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hirotake Kodama
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Naoki Fujita
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Atushi Imai
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
2
|
Ran R, Li L, Cheng P, Li H, He H, Chen Y, Hang J, Liang W. High frequency of melanoma in cdkn2b-/- / tp53-/- Xenopus tropicalis. Theranostics 2024; 14:7470-7487. [PMID: 39659584 PMCID: PMC11626935 DOI: 10.7150/thno.97475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Melanoma, the deadliest form of skin cancer characterized by high therapy resistance, has undergone extensive investigation through the utilization of BRAFV600E-driven melanoma animal models. However, there exists a paucity of animal models for the rare hereditary melanoma resulting from germline CDKN2A mutations. Methods: Here, employing CRISPR/Cas9 technology, we generated cdkn2b-/-/tp53-/- Xenopus tropicalis on a tp53 knockout background to model human CDKN2A germline mutation-induced hereditary melanoma. Results: The findings unveiled that cdkn2b-/-/tp53-/- frogs spontaneously developed melanoma, pancreatic cancer, and other tumors. Specifically, these frogs exhibited a high penetrance of spontaneous melanoma, sharing characteristics with melanomas in human hereditary melanoma caused by germline CDKN2A mutations. During melanoma development in cdkn2b-/-/tp53-/- frogs, the occurrences of epithelial-to-mesenchymal transition, the reactivation of pigment cell progenitor cell transcriptional states, and the activation in the MAPK, NF-kB, PI3K-Akt, and TGF-β signaling pathways were noted. Conclusions: Overall, cdkn2b-/-/tp53-/- Xenopus tropicalis provides a vertebrate model for investigating the development of CDKN2A germline mutation-induced hereditary melanoma, contributing to the exploration of the pathogenesis of hereditary melanoma in humans.
Collapse
Affiliation(s)
- Rensen Ran
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lanxin Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng Cheng
- Department of Neurosurgery, The second affiliated hospital of Xi'an Medical University, 710119, Xi'an, China
| | - Hongyi Li
- The School of Medical Technology and Engineering, Fujian Medical University, 350004, Fuzhou, Fujian, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Yonglong Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, 075000, Zhangjiakou, Hebei, China
| |
Collapse
|
3
|
Zhang P, Xiong C, Yang D, Li K, Wang Z, Ma F, Liao X, Xie M, Zeng X. Prognostic model based on centrosome-related genes constructed in head and neck squamous cell carcinoma. J Cancer 2024; 15:6531-6544. [PMID: 39668833 PMCID: PMC11632974 DOI: 10.7150/jca.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/13/2024] [Indexed: 12/14/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor in the epithelium of the head and neck. The role of the centrosome in malignant tumors is crucial. However, research on the centrosome in HNSCC remains largely unexplored. In this study, bioinformatics tools were utilized to analyze the expression and prognostic significance of centrosome-related genes (CRGs). CRGs exhibited a relatively high mutation frequency in HNSCC. Consensus unsupervised clustering analysis based on the expression profiles of CRGs revealed significant associations with clinical features, prognosis and immune microenvironment in HNSCC. Prognostic features were constructed using univariate and LASSO Cox regression, resulting in a centrosome-related model with eleven features. Patients were classified into high-risk and low-risk groups based on median risk scores. External validation using the GSE41613 dataset from the GEO database confirmed the reliability of the centrosome-related model. The model was associated with the prognosis of HNSCC patients, and centrosome-related features could impact tumor prognosis by influencing the tumor immune microenvironment. Finally, qPCR showed that CRGs were highly expressed in tumor tissues. This study developed a novel centrosome-related prognostic model, applicable for predicting the prognosis and immune landscape of HNSCC patients, offering potential targets for future HNSCC treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Chunrong Xiong
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Dunhui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Kang Li
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Zhen Wang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Fang Ma
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianqin Liao
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Miao Xie
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Minne RL, Luo NY, Traynor AM, Huang M, DeTullio L, Godden J, Stoppler M, Kimple RJ, Baschnagel AM. Genomic and Immune Landscape Comparison of MET Exon 14 Skipping and MET-Amplified Non-small Cell Lung Cancer. Clin Lung Cancer 2024; 25:567-576.e1. [PMID: 38852006 DOI: 10.1016/j.cllc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Mutation or amplification of the mesenchymal-epithelial transition (MET) tyrosine kinase receptor causes dysregulation of receptor function and stimulates tumor growth in non-small cell lung cancer (NSCLC) with the most common mutation being MET exon 14 (METex14). We sought to compare the genomic and immune landscape of MET-altered NSCLC with MET wild-type NSCLC. METHODS 18,047 NSCLC tumors were sequenced with Tempus xT assay. Tumors were categorized based on MET exon 14 (METex14) mutations; low MET amplification defined as a copy number gain (CNG) 6-9, high MET amplification defined as CNG ≥ 10, and MET other type mutations. Immuno-oncology (IO) biomarkers and the frequency of other somatic gene alterations were compared across MET-altered and MET wild-type groups. RESULTS 276 (1.53%) METex14, 138 (0.76%) high METamp, 63 (0.35%) low METamp, 27 (0.15%) MET other, and 17,543 (97%) MET wild-type were identified. Patients with any MET mutation including METex14 were older, while patients with METex14 were more frequently female and nonsmokers. MET gene expression was highest in METamp tumors. PD-L1 positivity rates were higher in MET-altered groups than MET wild-type. METex14 exhibited the lowest tumor mutational burden (TMB) and lowest neoantigen tumor burden (NTB). METamp exhibited the lowest proportion of CD4 T cells and the highest proportion of NK cells. There were significant differences in co-alterations between METamp and METex14. CONCLUSIONS METex14 tumors exhibited differences in IO biomarkers and the somatic landscape compared to non-METex14 NSCLC tumors. Variations in immune profiles can affect immunotherapy selection in MET-altered NSCLC and require further exploration.
Collapse
Affiliation(s)
- Rachel L Minne
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Natalie Y Luo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Anne M Traynor
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
5
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
6
|
Hoshi D, Kita E, Maru Y, Kogashi H, Nakamura Y, Tatsumi Y, Shimozato O, Nakamura K, Sudo K, Tsujimoto A, Yokoyama R, Kato A, Ushiku T, Fukayama M, Itami M, Yamaguchi T, Hippo Y. Derivation of pancreatic acinar cell carcinoma cell line HS-1 as a patient-derived tumor organoid. Cancer Sci 2023; 114:1165-1179. [PMID: 36382538 PMCID: PMC9986095 DOI: 10.1111/cas.15656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Acinar cell carcinoma (ACC) of the pancreas is a malignant tumor of the exocrine cell lineage with a poor prognosis. Due to its rare incidence and technical difficulties, few authentic human cell lines are currently available, hampering detailed investigations of ACC. Therefore, we applied the organoid culture technique to various types of specimens, such as bile, biopsy, and resected tumor, obtained from a single ACC patient. Despite the initial propagation, none of these organoids achieved long-term proliferation or tolerated cryopreservation, confirming the challenging nature of establishing ACC cell lines. Nevertheless, the biopsy-derived early passage organoid developed subcutaneous tumors in immunodeficient mice. The xenograft tumor histologically resembled the original tumor and gave rise to infinitely propagating organoids with solid features and high levels of trypsin secretion. Moreover, the organoid stained positive for carboxylic ester hydrolase, a specific ACC marker, but negative for the duct cell marker CD133 and the endocrine lineage marker synaptophysin. Hence, we concluded the derivation of a novel ACC cell line of the pure exocrine lineage, designated HS-1. Genomic analysis revealed extensive copy number alterations and mutations in EP400 in the original tumor, which were enriched in primary organoids. HS-1 displayed homozygous deletion of CDKN2A, which might underlie xenograft formation from organoids. Although resistant to standard cytotoxic agents, the cell line was highly sensitive to the proteasome inhibitor bortezomib, as revealed by an in vitro drug screen and in vivo validation. In summary, we document a novel ACC cell line, which could be useful for ACC studies in the future.
Collapse
Affiliation(s)
- Daisuke Hoshi
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emiri Kita
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hiroyuki Kogashi
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuki Nakamura
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasutoshi Tatsumi
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Osamu Shimozato
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | - Kentaro Sudo
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Akiko Tsujimoto
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Ryo Yokoyama
- Division of Pathological Diagnosis, Matsudo City General Hospital, Chiba, Japan
| | - Atsushi Kato
- Department of Hepatobiliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pathology, Asahi General Hospital, Chiba, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Taketo Yamaguchi
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan.,Department of Internal Medicine, Funabashi Central Hospital, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
7
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
8
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
9
|
Shteinman ER, Wilmott JS, da Silva IP, Long GV, Scolyer RA, Vergara IA. Causes, consequences and clinical significance of aneuploidy across melanoma subtypes. Front Oncol 2022; 12:988691. [PMID: 36276131 PMCID: PMC9582607 DOI: 10.3389/fonc.2022.988691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, the state of the cell in which the number of whole chromosomes or chromosome arms becomes imbalanced, has been recognized as playing a pivotal role in tumor evolution for over 100 years. In melanoma, the extent of aneuploidy, as well as the chromosomal regions that are affected differ across subtypes, indicative of distinct drivers of disease. Multiple studies have suggested a role for aneuploidy in diagnosis and prognosis of melanomas, as well as in the context of immunotherapy response. A number of key constituents of the cell cycle have been implicated in aneuploidy acquisition in melanoma, including several driver mutations. Here, we review the state of the art on aneuploidy in different melanoma subtypes, discuss the potential drivers, mechanisms underlying aneuploidy acquisition as well as its value in patient diagnosis, prognosis and response to immunotherapy treatment.
Collapse
Affiliation(s)
- Eva R. Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Cancer & Hematology Centre, Blacktown Hospital, Blacktown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales (NSW) Health Pathology, Sydney, NSW, Australia
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Ismael A. Vergara,
| |
Collapse
|
10
|
Perez‐Becerril C, Wallace AJ, Schlecht H, Bowers NL, Smith PT, Gokhale C, Eaton H, Charlton C, Robinson R, Charlton RS, Evans DG, Smith MJ. Screening of potential novel candidate genes in schwannomatosis patients. Hum Mutat 2022; 43:1368-1376. [PMID: 35723634 PMCID: PMC9540472 DOI: 10.1002/humu.24424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Schwannomatosis comprises a group of hereditary tumor predisposition syndromes characterized by, usually benign, multiple nerve sheath tumors, which frequently cause severe pain that does not typically respond to drug treatments. The most common schwannomatosis‐associated gene is NF2, but SMARCB1 and LZTR1 are also associated. There are still many cases in which no pathogenic variants (PVs) have been identified, suggesting the existence of as yet unidentified genetic risk factors. In this study, we performed extended genetic screening of 75 unrelated schwannomatosis patients without identified germline PVs in NF2, LZTR1, or SMARCB1. Screening of the coding region of DGCR8, COQ6, CDKN2A, and CDKN2B was carried out, based on previous reports that point to these genes as potential candidate genes for schwannomatosis. Deletions or duplications in CDKN2A, CDKN2B, and adjacent chromosome 9 region were assessed by multiplex ligation‐dependent probe amplification analysis. Sequencing analysis of a patient with multiple schwannomas and melanomas identified a novel duplication in the coding region of CDKN2A, disrupting both p14ARF and p16INK4a. Our results suggest that none of these genes are major contributors to schwannomatosis risk but the possibility remains that they may have a role in more complex mechanisms for tumor predisposition.
Collapse
Affiliation(s)
- Cristina Perez‐Becerril
- School of Biological Sciences, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Andrew J. Wallace
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Naomi L. Bowers
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Philip T. Smith
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Carolyn Gokhale
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Helen Eaton
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Chris Charlton
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Rachel Robinson
- North East and Yorkshire Genomic Laboratory HubSt James's University HospitalLeedsUK
| | - Ruth S. Charlton
- North East and Yorkshire Genomic Laboratory HubSt James's University HospitalLeedsUK
| | - D. Gareth Evans
- School of Biological Sciences, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Miriam J. Smith
- School of Biological Sciences, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation TrustManchesterUK
| |
Collapse
|
11
|
Transcriptional signatures underlying dynamic phenotypic switching and novel disease biomarkers in a linear cellular model of melanoma progression. Neoplasia 2021; 23:439-455. [PMID: 33845354 PMCID: PMC8042650 DOI: 10.1016/j.neo.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.
Collapse
|
12
|
Muniz TP, Sorotsky H, Kanjanapan Y, Rose AAN, Araujo DV, Fortuna A, Ghazarian D, Kamil ZS, Pugh T, Mah M, Thiagarajah M, Torti D, Spreafico A, Hogg D. Genomic Landscape of Malignant Peripheral Nerve Sheath Tumor‒Like Melanoma. J Invest Dermatol 2021; 141:2470-2479. [PMID: 33831431 DOI: 10.1016/j.jid.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST)-like melanoma is a rare malignancy with overlapping characteristics of both neural sarcoma and melanoma. Although the genomics of cutaneous melanoma has been extensively studied, those of MPNST-like melanoma have not. To characterize the genomic landscape of MPNST-like melanoma, we performed a single-center, retrospective cohort study at a tertiary academic cancer center. Consecutive patients with a confirmed histologic diagnosis of MPNST-like melanoma were screened, and those whose tissues were locally available were included in this analysis. Archival tissue from six patients (eight samples) was submitted for whole-exome and transcriptome sequencing analysis. We compared these data with available genomic studies of cutaneous melanoma and MPNST. NF1 was altered (mutated, deleted, or amplified) in 67% of patients. Genes related to cell cycle regulation were frequently altered, with frequent deletion of ZNF331, which, to the best of our knowledge, has not been previously described in cutaneous melanoma. The serine protease inhibitor SERPINB4 was deleted in 100% of the patients. We show that MPNST-like melanoma presents overlapping genomic features with cutaneous melanoma and MPNST, but it is unique by the frequency of loss of function of ZNF331 and SERPINB4.
Collapse
Affiliation(s)
- Thiago P Muniz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Hadas Sorotsky
- Institute of Oncology, Chaim Sheba Medical Center at Tel-Hashomer, Ramant Gan, Israel
| | - Yada Kanjanapan
- Department of Medical Oncology, Canberra Region Cancer Centre, Canberra, Australia
| | - April A N Rose
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Gerald Bronfman Department of Oncology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Daniel V Araujo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medical Oncology, Hospital de Base, Sao Jose do Rio Preto, Brazil
| | - Alexander Fortuna
- Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Danny Ghazarian
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zaid Saeed Kamil
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Trevor Pugh
- Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michelle Mah
- Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Trillium Health Partners, Genetics Laboratory, Mississauga, Ontario, Canada
| | - Madhuran Thiagarajah
- Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine, Unity Health Toronto, Toronto, Ontario, Canada
| | - Dax Torti
- Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Phase 1 Drug Development Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Hogg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|