1
|
Fuchs C, Wang Y, Wise E, Farinelli WA, Anderson RR, Cho S, Meyerle JH, Tam J. Structural and molecular characteristics of weight-bearing volar skin can be reconstituted by micro skin tissue column grafting. FASEB J 2024; 38:e23873. [PMID: 39105468 DOI: 10.1096/fj.202400866r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
For patients with lower limb amputations, prostheses are immensely helpful for mobility and the ability to perform job-related or recreational activities. However, the skin covering the amputation stump is typically transposed from adjacent areas of the leg and lacks the weight-bearing capacity that is only found in the specialized skin covering the palms and soles (a.k.a. volar skin). As a result, the skin tissue in direct contact with the prosthesis frequently breaks down, leading to the development of painful sores and other complications that limit, and often preclude, the use of prostheses. Transplanting volar skin onto amputation stumps could be a solution to these problems, but traditional skin transplantation techniques cause substantial morbidity at the donor site, such as pain and scarring, which are especially problematic for volar skin given the critical functional importance of the volar skin areas. We previously developed the technology to collect and engraft full-thickness skin tissue while avoiding long-term donor site morbidity, by harvesting the skin in the form of small (~0.5 mm diameter) cores that we termed "micro skin tissue columns" (MSTCs), so that each donor wound is small enough to heal quickly and without clinically appreciable scarring or other long-term abnormalities. The goal of this study was to establish whether a similar approach could be used to confer the structural and molecular characteristics of volar skin ectopically to other skin areas. In a human-to-mouse xenograft model, we show the long-term persistence of various human plantar MSTC-derived cell types in the murine recipient. Then in an autologous porcine model, we harvested MSTCs from the bottom of the foot and transplanted them onto excision wounds on the animals' trunks. The healing processes at both the donor and graft sites were monitored over 8 weeks, and tissue samples were taken to verify volar-specific characteristics by histology and immunohistochemistry. The volar donor sites were well-tolerated, healed rapidly, and showed no signs of scarring or any other long-term defects. The graft sites were able to maintain volar-specific histologic features and expression of characteristics protein markers, up to the 8-week duration of this study. These results suggest that MSTC grafting could be a practical approach to obtain autologous donor volar skin tissue, confer volar skin characteristics ectopically to nonvolar skin areas, improve the load-bearing capacity of amputation stump skin, and ultimately enhance mobility and quality-of-life for lower limb amputees.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Wise
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William A Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Baumann ME, Haddad NR, Salazar A, Childers WL, Farrokhi S, Goldstein NB, Hendershot BD, Reider L, Thompson RE, Valerio MS, Dearth CL, Garza LA, Major Extremity Trauma Research Consortium (METRC). Testing the Reliability of Optical Coherence Tomography to Measure Epidermal Thickness and Distinguish Volar and Nonvolar Skin. JID INNOVATIONS 2024; 4:100276. [PMID: 38827331 PMCID: PMC11137746 DOI: 10.1016/j.xjidi.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 06/04/2024] Open
Abstract
In persons with limb loss, prosthetic devices cause skin breakdown, largely because residual limb skin (nonvolar) is not intended to bear weight such as palmoplantar (volar) skin. Before evaluation of treatment efficacy to improve skin resiliency, efforts are needed to establish normative data and assess outcome metric reliability. The purpose of this study was to use optical coherence tomography to (i) characterize volar and nonvolar skin epidermal thickness and (ii) examine the reliability of optical coherence tomography. Four orientations of optical coherence tomography images were collected on 33 volunteers (6 with limb loss) at 2 time points, and the epidermis was traced to quantify thickness by 3 evaluators. Epidermal thickness was greater (P < .01) for volar skin (palm) (265.1 ± 50.9 μm, n = 33) than for both nonvolar locations: posterior thigh (89.8 ± 18.1 μm, n = 27) or residual limb (93.4 ± 27.4 μm, n = 6). The inter-rater intraclass correlation coefficient was high for volar skin (0.887-0.956) but low for nonvolar skin (thigh: 0.292-0.391, residual limb: 0.211-0.580). Correlation improved when comparing only 2 evaluators who used the same display technique (palm: 0.827-0.940, thigh: 0.633-0.877, residual limb: 0.213-0.952). Despite poor inter-rater agreement for nonvolar skin, perhaps due to challenges in identifying the dermal-epidermal junction, this study helps to support the utility of optical coherence tomography to distinguish volar from nonvolar skin.
Collapse
Affiliation(s)
- Molly E. Baumann
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alyssa Salazar
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - W. Lee Childers
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Farrokhi
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Physical Therapy, Chapman University, Irvine, California, USA
| | - Neil B. Goldstein
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D. Hendershot
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Lisa Reider
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Michael S. Valerio
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Christopher L. Dearth
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
3
|
Wang J, Lin X, Shen Z, Li G, Hu L, Li Q, Li Y, Wang J, Zhang C, Wang S, Wu X. AKT from dental epithelium to papilla promotes odontoblast differentiation. Differentiation 2023; 134:52-60. [PMID: 37898102 DOI: 10.1016/j.diff.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
Epithelial-mesenchymal interactions occur during tooth development. The dental epithelium (DE) is regarded as the signal center that regulates tooth morphology. However, the mechanism by which DE regulates the differentiation of mesenchyme-derived dental papilla (DP) into odontoblasts remains unclear. Using miniature pigs as a model, we analyzed the expression profiles of the DE and DP during odontoblast differentiation using high-throughput RNA sequencing. The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the most enriched pathways in both DE and DP. The PI3K/AKT pathway was first activated in the inner enamel epithelium but not in the DP on embryonic day 50. This pathway was then activated in the odontoblast layer on embryonic day 60. We showed that AKT activation promoted odontoblast differentiation of DP cells. We further demonstrated that activation of PI3K/AKT signaling in the DE effectively increased the expression levels of AKT and dentin sialophosphoprotein in DP cells. Additionally, we found that DE cells secreted collagen type IV alpha 6 chain (COL4A6) downstream of epithelial AKT signaling to positively regulate mesenchymal AKT levels. Therefore, our data suggest that PI3K/AKT signaling from the DE to the DP promotes odontoblast differentiation via COL4A6 secretion.
Collapse
Affiliation(s)
- Jiangyi Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Lin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zongshan Shen
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Guoqing Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Qiong Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China; Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, 410008, China.
| | - Xiaoshan Wu
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, 410008, China; Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Almet AA, Yuan H, Annusver K, Ramos R, Liu Y, Wiedemann J, Sorkin DH, Landén NX, Sonkoly E, Haniffa M, Nie Q, Lichtenberger BM, Luecken MD, Andersen B, Tsoi LC, Watt FM, Gudjonsson JE, Plikus MV, Kasper M. A Roadmap for a Consensus Human Skin Cell Atlas and Single-Cell Data Standardization. J Invest Dermatol 2023; 143:1667-1677. [PMID: 37612031 PMCID: PMC10610458 DOI: 10.1016/j.jid.2023.03.1679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 08/25/2023]
Abstract
Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.
Collapse
Affiliation(s)
- Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA
| | - Hao Yuan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Julie Wiedemann
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Mathematical, Computational & Systems Biology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Dara H Sorkin
- Institute for Clinical & Translational Science, University of California, Irvine, Irvine, California, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany; Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bogi Andersen
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona M Watt
- Centre for Gene Therapy & Regenerative Medicine, Faculty of Life Sciences & Medicine, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA.
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Transcriptional heterogeneity in human diabetic foot wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528839. [PMID: 36824808 PMCID: PMC9949055 DOI: 10.1101/2023.02.16.528839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Wound repair requires the coordination of multiple cell types including immune cells and tissue resident cells to coordinate healing and return of tissue function. Diabetic foot ulceration is a type of chronic wound that impacts over 4 million patients in the US and over 7 million worldwide (Edmonds et al., 2021). Yet, the cellular and molecular mechanisms that go awry in these wounds are not fully understood. Here, by profiling chronic foot ulcers from non-diabetic (NDFUs) and diabetic (DFUs) patients using single-cell RNA sequencing, we find that DFUs display transcription changes that implicate reduced keratinocyte differentiation, altered fibroblast function and lineages, and defects in macrophage metabolism, inflammation, and ECM production compared to NDFUs. Furthermore, analysis of cellular interactions reveals major alterations in several signaling pathways that are altered in DFUs. These data provide a view of the mechanisms by which diabetes alters healing of foot ulcers and may provide therapeutic avenues for DFU treatments.
Collapse
|
6
|
Wood FM. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J Burn Care Res 2023; 44:S42-S47. [PMID: 36567469 DOI: 10.1093/jbcr/irac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue engineering solutions for skin have been developed over the last few decades with a focus initially on a two-layered structure with epithelial and dermal repair. An essential element of skin restoration is a source of cells capable of differentiating into the appropriate phenotype. The need to repair areas of skin when traditional techniques were not adequate addressed led to cell based therapies being developed initially as a laboratory-based tissue expansion opportunity, both as sheets of cultured epithelial autograft and in composite laboratory-based skin substitutes. The time to availability of the cell-based therapies has been solved in a number of ways, from using allograft cell-based solutions to the use of point of care skin cell harvesting for immediate clinical use. More recently pluripotential cells have been explored providing a readily available source of cells and cells which can express the broad range of phenotypes seen in the mature skin construct. The lessons learnt from the use of cell based techniques has driven the exploration of the use of 3D printing technology, with controlled accurate placement of the cells within a specific printed construct to optimise the phenotypic expression and tissue generation.
Collapse
Affiliation(s)
- Fiona M Wood
- University of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Burns Service of WA, Level 4 Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western, Australia 6150
| |
Collapse
|
7
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|