1
|
Stevens M, Wang Y, Bouley SJ, Mandigo TR, Sharma A, Sengupta S, Housden A, Perrimon N, Walker JA, Housden BE. Inhibition of autophagy as a novel treatment for neurofibromatosis type 1 tumors. Mol Oncol 2025; 19:825-851. [PMID: 39129390 PMCID: PMC11887668 DOI: 10.1002/1878-0261.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects. Therefore, there is a clear need to discover new drugs to target NF1-deficient tumor cells. Using a Drosophila cell model of NF1, we performed synthetic lethal screens to identify novel drug targets. We identified 54 gene candidates, which were validated with variable dose analysis as a secondary screen. Pathways associated with five candidates could be targeted using existing drugs. Among these, chloroquine (CQ) and bafilomycin A1, known to target the autophagy pathway, showed the greatest potential for selectively killing NF1-deficient Drosophila cells. When further investigating autophagy-related genes, we found that 14 out of 30 genes tested had a synthetic lethal interaction with NF1. These 14 genes are involved in multiple aspects of the autophagy pathway and can be targeted with additional drugs that mediate the autophagy pathway, although CQ was the most effective. The lethal effect of autophagy inhibitors was conserved in a panel of human NF1-deficient Schwann cell lines, highlighting their translational potential. The effect of CQ was also conserved in a Drosophila NF1 in vivo model and in a xenografted NF1-deficient tumor cell line grown in mice, with CQ treatment resulting in a more significant reduction in tumor growth than selumetinib treatment. Furthermore, combined treatment with CQ and selumetinib resulted in a further reduction in NF1-deficient cell viability. In conclusion, NF1-deficient cells are vulnerable to disruption of the autophagy pathway. This pathway represents a promising target for the treatment of NF1-associated tumors, and we identified CQ as a candidate drug for the treatment of NF1 tumors.
Collapse
Affiliation(s)
- Megan Stevens
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Yuanli Wang
- Living Systems InstituteUniversity of ExeterUK
- The First People's Hospital of QinzhouChina
| | | | - Torrey R. Mandigo
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Aditi Sharma
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sonali Sengupta
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Amy Housden
- Living Systems InstituteUniversity of ExeterUK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteNew YorkNYUSA
| | - James A. Walker
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Cancer ProgramBroad Institute of MIT and HarvardCambridgeMAUSA
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Benjamin E. Housden
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| |
Collapse
|
2
|
Bhandarkar AR, Bhandarkar S, Babovic-Vuksanovic D, Raghunathan A, Schwartz J, Spinner RJ. Precision oncology in neurofibromatosis type 1: quantification of differential sensitivity to selumetinib in plexiform neurofibromas using single-cell RNA sequencing. J Neurooncol 2024; 169:147-153. [PMID: 38739187 DOI: 10.1007/s11060-024-04711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE Selumetinib is an FDA-approved targeted therapy for plexiform neurofibromas in neurofibromatosis type 1(NF1) with durable response rates seen in most, but not all patients. In this proof-of-concept study, we demonstrate single-cell RNA sequencing(scRNAseq) as a technique for quantifying drug response to selumetinib at the single cell level. METHODS scRNAseq data from neurofibroma biopsies was obtained from a public genomics repository. Schwann cell populations were identified through standard clustering techniques and single-cell selumetinib sensitivity was quantified on a scale of 0(resistant) to 1(sensitive) based on the expression pattern of a 500 gene selumetinib sensitivity signature from the BeyondCell sensitivity library. RESULTS A total of seven plexiform neurofibromas were included in our final analysis. The median absolute number of Schwann cells across samples was 658 cells (IQR: 1,029 cells, Q1-Q3: 135 cells to 1,163 cells). There was a statistically significant difference in selumetinib sensitivity profiles across samples (p < 0.001). The tumor with the highest median selumetinib sensitivity score had a median selumetinib sensitivity score of 0.64(IQR: 0.14, Q1-Q3: 0.59-0.70, n = 112 cells) and the tumor with the lowest median selumetinib sensitivity score had a median score of 0.37 (IQR: 0.21, Q1-Q3: 0.27-0.48, n = 1,034 cells). CONCLUSIONS scRNAseq of plexiform neurofibroma biopsies reveals differential susceptibilities to selumetinib on a single cell level. These findings may explain the partial responses seen in clinical trials of selumetinib for NF1 and demonstrate the value of collecting scRNAseq data for future NF1 trials.
Collapse
Affiliation(s)
| | - Shaan Bhandarkar
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dusica Babovic-Vuksanovic
- Division of Pediatric Genetics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Flint AC, Mitchell DK, Angus SP, Smith AE, Bessler W, Jiang L, Mang H, Li X, Lu Q, Rodriguez B, Sandusky GE, Masters AR, Zhang C, Dang P, Koenig J, Johnson GL, Shen W, Liu J, Aggarwal A, Donoho GP, Willard MD, Bhagwat SV, Wade Clapp D, Rhodes SD. Combined CDK4/6 and ERK1/2 Inhibition Enhances Antitumor Activity in NF1-Associated Plexiform Neurofibroma. Clin Cancer Res 2023; 29:3438-3456. [PMID: 37406085 PMCID: PMC11060649 DOI: 10.1158/1078-0432.ccr-22-2854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.
Collapse
Affiliation(s)
- Alyssa C. Flint
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brooke Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R. Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Pengtao Dang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Jenna Koenig
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weihua Shen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiangang Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Amit Aggarwal
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory P. Donoho
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Melinda D. Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Shripad V. Bhagwat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Rhodes SD, McCormick F, Cagan RL, Bakker A, Staedtke V, Ly I, Steensma MR, Lee SY, Romo CG, Blakeley JO, Sarin KY. RAS Signaling Gone Awry in the Skin: The Complex Role of RAS in Cutaneous Neurofibroma Pathogenesis, Emerging Biological Insights. J Invest Dermatol 2023; 143:1358-1368. [PMID: 37245145 PMCID: PMC10409534 DOI: 10.1016/j.jid.2023.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 05/29/2023]
Abstract
Cutaneous neurofibromas (cNFs) are the most common tumor in people with the rasopathy neurofibromatosis type 1. They number in hundreds or even thousands throughout the body, and currently, there are no effective interventions to prevent or treat these skin tumors. To facilitate the identification of novel and effective therapies, essential studies including a more refined understanding of cNF biology and the role of RAS signaling and downstream effector pathways responsible for cNF initiation, growth, and maintenance are needed. This review highlights the current state of knowledge of RAS signaling in cNF pathogenesis and therapeutic development for cNF treatment.
Collapse
Affiliation(s)
- Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA; Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | | | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
5
|
Gu Y, Wei C, Chung M, Li H, Guo Z, Long M, Li Y, Wang W, Aimaier R, Li Q, Wang Z. Concurrent inhibition of FAK/SRC and MEK overcomes MEK inhibitor resistance in Neurofibromatosis Type I related malignant peripheral nerve sheath tumors. Front Oncol 2022; 12:910505. [PMID: 35965583 PMCID: PMC9372505 DOI: 10.3389/fonc.2022.910505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas which lack effective drugs. Loss of the RAS GTPase-activating protein NF1 and subsequent overactivation of mitogen-activated protein kinase kinase (MAPK) signaling exist nearly uniformly in MPNST, making MAPK inhibition a promising therapeutic intervention. However, the efficacy of MEK inhibitor (MEKi) monotherapy was limited in MPNST and the relative mechanisms remained largely unexplored. In this study, we generated three MEKi-resistant cell models and investigated the mechanisms of MEKi resistance using high-throughput transcriptomic sequencing. We discovered that cell apoptosis and cell cycle arrest induced by MEKi were rescued in MEKi-resistant cells and the upregulation of LAMA4/ITGB1/FAK/SRC signaling conferred resistance to MEKi. In addition, concurrent inhibition of MAPK signaling and FAK/SRC cascade could sensitize MPNST cells to MEKi. Our findings provide potential solutions to overcome MEKi resistance and effective combination therapeutic strategies for treating MPNSTs.
Collapse
Affiliation(s)
- Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| |
Collapse
|
6
|
Cells to Surgery Quiz: December 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|