1
|
O'Neill CG, Sawaya AP, Mehdizadeh S, Brooks SR, Hasneen K, Nayak S, Overmiller AM, Morasso MI. SOX2-Dependent Wound Repair Signature Triggers Prohealing Outcome in Hyperglycemic Wounds. J Invest Dermatol 2025; 145:451-455.e5. [PMID: 39127091 PMCID: PMC11745936 DOI: 10.1016/j.jid.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Christopher G O'Neill
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer Mehdizadeh
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Wang X, Xu G, Zhang F, Wei Y, Deng J, Mu L, He J, He D, Yin M, Dal Pra I, Liu X, Cai W, Yang L, Han C, Huang G, Wu J. eIF6 modulates skin wound healing by upregulating keratin 6B. Stem Cells Transl Med 2024; 13:1101-1112. [PMID: 39406496 PMCID: PMC11555475 DOI: 10.1093/stcltm/szae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/08/2024] [Indexed: 11/13/2024] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burn and Wound Repair Surgery, Guangdong Provincial People’s Hospital, Guangzhou 510080, People’s Republic of China
| | - Guangchao Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, People’s Republic of China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Yating Wei
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jiawen Deng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Lan Mu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jinqing He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Dehua He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Meifang Yin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Ilaria Dal Pra
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| | - Xiaofang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Linjing Yang
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| |
Collapse
|
3
|
Liu X, Teng Y, Li H, Luo D, Li H, Shen J, Du S, Zhang Y, Wang D, Jing J. Identification of IGF2 promotes skin wound healing by co-expression analysis. Int Wound J 2024; 21:e14862. [PMID: 38572823 PMCID: PMC10993366 DOI: 10.1111/iwj.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.
Collapse
Affiliation(s)
- Xingyan Liu
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ying Teng
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Huan Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Ding Luo
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Hongkun Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jinghan Shen
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Simin Du
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yuyue Zhang
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Dali Wang
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jie Jing
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|