1
|
Krstić M, Teslić N, Bošković P, Obradović D, Zeković Z, Milić A, Pavlić B. Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction. Molecules 2023; 28:molecules28010369. [PMID: 36615563 PMCID: PMC9822463 DOI: 10.3390/molecules28010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Garlic (Allium sativum L.) is widely used in various food products and traditional medicine. Besides unique taste and flavour, it is well known for its chemical profile and bioactive potential. The aim of this study was to apply subcritical water extraction (SWE) and pressurized liquid extraction (PLE) for the extraction of bioactive compounds from the Ranco genotype of garlic. Moreover, PLE process was optimized using response surface methodology (RSM) in order to determine effects and optimize ethanol concentration (45-75%), number of cycles (1-3), extraction time (1-3 min) and temperature (70-110 °C) for maximized total phenols content (TP) and antioxidant activity evaluated by various in vitro assays. Furthermore, temperature effect in SWE process on all responses was evaluated, while allicin content (AC), as a major organosulphur compound, was determined in all samples. Results indicated that PLE provided tremendous advantage over SWE in terms of improved yield and antioxidant activity of garlic extracts. Therefore, high-pressure processes could be used as clean and green procedures for the isolation of garlic bioactives.
Collapse
Affiliation(s)
- Marko Krstić
- AU “Julija Nova”, Save Mrkalja 26a, 11000 Belgrade, Serbia
- Faculty of Chemistry, University of Belgrade, Studenski Trg 16, 11000 Belgrade, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Perica Bošković
- Department of Chemistry, Faculty of Science, 21000 Split, Croatia
| | - Darija Obradović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Anita Milić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
2
|
Chemical composition and antioxidant activity of oil obtained from coconut meal by subcritical ethanol extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Chen J, Wang X, Zhang B, Yang Y, Song Y, Zhang F, Liu B, Zhou Y, Yi Y, Shan Y, Lü X. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145321. [PMID: 33515886 DOI: 10.1016/j.scitotenv.2021.145321] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The conversion of lignocellulosic biomass to bioethanol is a potential approach to alleviate the energy crisis and environmental deterioration. To improve the conversion efficiency of bioethanol from wheat straw (WS), the optimization of subcritical water pretreatment and high solid hydrolysis were investigated in this study. Response surface methodology (RSM) accompanied with glucose concentration after enzymatic hydrolysis as a more reasonable response value was applied for the pretreatment optimization, and the optimum conditions were obtained as 220.51 °C of extraction temperature, 22.01 min of extraction time and 2.50% (w/v) of substrate loading. After pretreatment, the hemicellulose decreased by 18.37%, and the cellulose and lignin increased by 25.92% and 8.81%, respectively, which were consistent with the destroyed microstructure and raised crystallinity. The high efficiency of separate hydrolysis and fermentation (SHF) was verified by five commercial cellulases, and yields of hydrolysis and fermentation were 77.85-89.59% and 93.34-96.18%, respectively. Based on the high solid (15%) hydrolysis and fermentation, the ethanol concentration was significantly improved to 37.00 g/L. Interestingly, 64.47% of lignin was accumulated in the solid residue after enzymatic hydrolysis and it did not affect the efficiency of SHF, which further suggested that subcritical water mainly affected the structure of WS rather than the removal of lignin. Therefore, subcritical water pretreatment combined with high solid hydrolysis is a more effective solution for bioethanol conversion, which is also a promising strategy to utilize all components of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biying Zhang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangbo Song
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Huamán-Castilla NL, Mariotti-Celis MS, Martínez-Cifuentes M, Pérez-Correa JR. Glycerol as Alternative Co-Solvent for Water Extraction of Polyphenols from Carménère Pomace: Hot Pressurized Liquid Extraction and Computational Chemistry Calculations. Biomolecules 2020; 10:E474. [PMID: 32244874 PMCID: PMC7175273 DOI: 10.3390/biom10030474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Glycerol is a co-solvent for water extraction that has been shown to be highly effective for obtaining polyphenol extracts under atmospheric conditions. However, its efficacy under subcritical conditions has not yet been studied. We assessed different water-glycerol mixtures (15%, 32.5%, and 50%) in a hot pressurized liquid extraction system (HPLE: 10 MPa) at 90 °C, 120 °C, and 150 °C to obtain extracts of low molecular weight polyphenols from Carménère grape pomace. Under the same extraction conditions, glycerol as a co-solvent achieved significantly higher yields in polyphenols than ethanol. Optimal extraction conditions were 150 °C, with 32.5% glycerol for flavonols and 50% for flavanols, stilbenes, and phenolic acids. Considering gallic acid as a model molecule, computational chemistry calculations were applied to explain some unusual extraction outcomes. Furthermore, glycerol, methanol, ethanol, and ethylene glycol were studied to establish an incipient structure-property relationship. The high extraction yields of gallic acid obtained with water and glycerol solvent mixtures can be explained not only by the additional hydrogen bonds between glycerol and gallic acid as compared with the other alcohols, but also because the third hydroxyl group allows the formation of a three-centered hydrogen bond, which intensifies the strongest glycerol and gallic acid hydrogen bond. The above occurs both in neutral and deprotonated gallic acid. Consequently, glycerol confers to the extraction solvent a higher solvation energy of polyphenols than ethanol.
Collapse
Affiliation(s)
- Nils Leander Huamán-Castilla
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile;
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación calle Ancash s/n, Moquegua 18001, Peru
| | - María Salomé Mariotti-Celis
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 9845, Santiago 8940577, Chile
| | - Maximiliano Martínez-Cifuentes
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370993, Chile
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile;
| |
Collapse
|
5
|
Asaduzzaman A, Haq M, Chun BS. Reduction of histamine and heavy metals in mackerel hydrolyzates produced by catalysts associated-subcritical water hydrolysis. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Mottahedin P, Asl AH, Lotfollahi MN. Experimental and modeling investigation on the solubility of β-carotene in pure and ethanol-modified subcritical water. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|