1
|
Cai W, Chen C, Bao C, Gu JN, Li K, Jia J. Nitrate reduction to nitrogen in wastewater using mesoporous carbon encapsulated Pd-Cu nanoparticles combined with in-situ electrochemical hydrogen evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121346. [PMID: 38824884 DOI: 10.1016/j.jenvman.2024.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.
Collapse
Affiliation(s)
- Wenlue Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chen Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
2
|
Liu F, Zhang Z, Xu J. Electrochemical Mechanisms and Optimization System of Nitrate Removal from Groundwater by Polymetallic Nanoelectrodes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1923. [PMID: 36767289 PMCID: PMC9915225 DOI: 10.3390/ijerph20031923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Zn-Cu-TiO2 polymetallic nanoelectrodes were developed using Ti electrodes as the substrate. The reaction performance and pollutant removal mechanism of the electrodes were studied for different technological conditions by analyzing the electrochemical properties of the electrodes in the electrochemical system, using Ti, TiO2, Cu-TiO2, and Zn-Cu-TiO2 electrodes as cathodes and Pt as the anode. The Tafel curve was used for measuring the corrosion rate of the electrode. The Tafel curve resistance of the Zn-Cu-TiO2 polymetallic nanoelectrode was the smallest, so the Zn-Cu-TiO2 nanoelectrode was the least prone to corrosion. The electrode reaction parameters were determined using cyclic voltammetry (CV). Zn-Cu-TiO2 polymetallic nanoelectrodes have the lowest peak position and the highest electrochemical activity. The surface area of the electrode was determined by the time-current (CA) method, and it was found that the Zn-Cu-TiO2 polymetallic nanoelectrode had a larger surface area and the highest removal rate of nitrate. The Ti, TiO2, Cu-TiO2, and Zn-Cu-TiO2 electrodes also had higher removal rates for real groundwater, and the differences between the removal rates of nitrates for deionized water and real groundwater decreased as removal time increased. The Zn-Cu-TiO2 polymetallic nanoelectrode exhibited the highest removal rate for real groundwater. This study reveals the reaction mechanism of the cathode reduction of nitrate, which provides the basis for constructing electrochemical reactors and its application in treating nitrate-contaminated groundwater. A mathematical model of optimized working conditions was created by the response surface method, and optimum time, NaCl concentration, and current density were 93.39 min, 0.22 g/L, and 38.34 mA/cm2, respectively. Under these optimal conditions, the nitration removal rate and ammonium nitrogen generation in the process solution were 100% and 0.00 mg/L, respectively.
Collapse
|
3
|
Shemer H, Huang Y, Hasson D, Semiat R. Coupling donann dialysis and electro-reduction process for nitrate removal from simulated groundwater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Teng M, Ye J, Wan C, He G, Chen H. Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengjuan Teng
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Jingrui Ye
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Chao Wan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| |
Collapse
|
5
|
Ma J, Wei W, Qin G, Xiao T, Tang W, Zhao S, Jiang L, Liu S. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. WATER RESEARCH 2022; 208:117862. [PMID: 34814021 DOI: 10.1016/j.watres.2021.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nitrate pollution is a critical environmental issue in need of urgent addressing. Electrochemical reduction is an attractive strategy for treating nitrate due to the environmental friendliness. However, it is still a challenge to achieve the simultaneous high activity and selectivity. Here we report the design of a porous tubular carbon membrane as the electrode deposited with catalysts, which provides a large triple-phase boundary area for nitrate removal reactions. The achieved nitrate removal rate is one order of magnitude higher than other literatures with high nitrate conversion and high selectivity of nitrogen. The carbon membrane itself had a limited catalytic property thus Cu-Pd bimetal catalysts were deposited inside the nano-pores to enhance the activity and selectivity. When Na2SO4 electrolyte was applied, the achieved single-pass removal of nitrate was increased from 55.15% (for blank membrane) to 97.12% by adding catalysts inside the membrane. In case of NaOH as the electrolyte, the single-pass nitrate removal efficiency, selectivity to nitrogen formation and nitrate removal rate was 90.66%, 96.40% and 1.47 × 10-3 mmol min-1 cm-2, respectively. Density functional theory studies demonstrate that the loading of bimetal catalysts compared with single metal catalysts enhances the adsorption of *NO3 on membrane surface favorable for N2 formation than NH3 on Cu-Pd surface. The application of catalytic carbon membrane nano-reactors can open new windows for nitrate removal due to the high reactor efficiency.
Collapse
Affiliation(s)
- Jing Ma
- School of Space and Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Wei Wei
- College of Biochemical Engineering, Beijing Union University, 18 Sanqu Fatouxili, Chaoyang District, Beijing 100023, China
| | - Guotong Qin
- School of Space and Environment, Beihang University, Shahe Campus, Beijing 102206, China.
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Shahe Campus, Beijing 102206, China
| | - Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Lei X, Liu F, Li M, Ma X, Wang X, Zhang H. Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater. CHEMOSPHERE 2018; 212:237-244. [PMID: 30145415 DOI: 10.1016/j.chemosphere.2018.08.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
A novel Cu-Pd-TNPs (Copper-Palladium-TiO2 Nanopores) polymetallic nanoelectrode was fabricated, and then used to catalytically reduce dissolved nitrate in groundwater. The aim was to develop a high efficient nanoelectrode for removing nitrate from groundwater. The Cu-Pd-TNPs polymetallic nanoelectrode was fabricated by plating Pd onto a TiO2 nanoporous matrix and then plating Cu onto the layer which is previous coating. TiO2 nanopores on the Cu-Pd-TNPs electrode surface gave the electrode a large specific surface area, and the Pd and Cu nanoparticles gave the electrode a high nitrogen to hydrogen ratio and a high nitrate reduction activity. Scanning electron microscopy images indicated that the Cu-Pd-TNPs polymetallic nanoelectrode was porous with lamellar deposits. The elements on the Cu-Pd-TNPs electrode surface, identified by energy-dispersive X-ray spectroscopy, were Ti, Pd, Cu, and O. The Cu-Pd-TNPs electrode gave a high nitrate reduction rate, removing 287.3% nitrate more than that was removed by a Ti nanoelectrode under the same conditions. The optimal NaCl concentration, at which the electrode effectively removed nitrate and produced as few byproducts as possible, was determined. Nitrate was completely removed using the Cu-Pd-TNPs electrode with a Pt anode at a NaCl concentration of 0.5 g L-1, little ammonia and almost no nitrite were detected in the treated solution. Using a constant current density, temperature strongly affected nitrate removal, but the initial nitrate concentration affected the removal rate little. Maximum nitrate was removed at pH 3 when the other conditions were constant.
Collapse
Affiliation(s)
- Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Fang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xuejiao Ma
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xinghui Wang
- School of Municipal Road and Bridge Projects, Inner Mongolia Technical College of Construction, Huhhot, 010070, China
| | - Hanjun Zhang
- School of Municipal Road and Bridge Projects, Inner Mongolia Technical College of Construction, Huhhot, 010070, China
| |
Collapse
|
8
|
Sensitive 1,2-dichlorobenzene chemi-sensor development based on solvothermally prepared FeO/CdO nanocubes for environmental safety. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Hou M, Pu Y, Qi WK, Tang Y, Wan P, Yang XJ, Song P, Fisher A. Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1413357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mingtao Hou
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Pu
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei-kang Qi
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yang Tang
- Department of Applied Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Pingyu Wan
- Department of Applied Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Xiao Jin Yang
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Peng Song
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Adrian Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Rai RK, Tyagi D, Singh SK. Room-Temperature Catalytic Reduction of Aqueous Nitrate to Ammonia with Ni Nanoparticles Immobilized on an Fe3
O4
@n-SiO2
@h-SiO2
-NH2
Support. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rohit Kumar Rai
- Discipline of Chemistry; Indian Institute of Technology Indore; 453552 Simrol, Indore India
| | - Deepika Tyagi
- Discipline of Chemistry; Indian Institute of Technology Indore; 453552 Simrol, Indore India
| | - Sanjay Kumar Singh
- Discipline of Chemistry; Indian Institute of Technology Indore; 453552 Simrol, Indore India
- Discipline of Metallurgy Engineering and Materials Science; Indian Institute of Technology Indore; 453552 Simrol, Indore India
| |
Collapse
|
11
|
Hasnat MA, Islam MA, Aoun SB, Safwan JA, Rahman MM, Asiri AM. Composite Noble-Metal Films/H+-Conducting Solid-Polymer Electrolyte Assemblies: The Nitrate-Reduction Activity in an Asymmetric Sandwich-Type Reactor. Chempluschem 2015; 80:1634-1641. [DOI: 10.1002/cplu.201500255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad A. Hasnat
- Department of Chemistry; Shahajalal University of Science and Technology; Sylhet 3114 Bangladesh
| | - Muhammad Amirul Islam
- Department of Chemistry; Shahajalal University of Science and Technology; Sylhet 3114 Bangladesh
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton AB T6G 2G2 Canada
| | - S. Ben Aoun
- Department of Chemistry; Faculty of Science; Taibah University; P.O. Box 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Jamil A. Safwan
- Department of Chemistry; Shahajalal University of Science and Technology; Sylhet 3114 Bangladesh
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Material Research (CEAMR); and Chemistry Department; Faculty of Science; King Abdulaziz University; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Material Research (CEAMR); and Chemistry Department; Faculty of Science; King Abdulaziz University; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|