1
|
Letwaba J, Uyor UO, Mavhungu ML, Achuka NO, Popoola PA. A review on MOFs synthesis and effect of their structural characteristics for hydrogen adsorption. RSC Adv 2024; 14:14233-14253. [PMID: 38690110 PMCID: PMC11058478 DOI: 10.1039/d4ra00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Climate change is causing a rise in the need to transition from fossil fuels to renewable and clean energy such as hydrogen as a sustainable energy source. The issue with hydrogen's practical storage, however, prevents it from being widely used as an energy source. Current solutions, such as liquefied and compressed hydrogen storage, are insufficient to meet the U.S. Department of Energy's (US DOE) extensive on-board application requirements. Thus, a backup strategy involving material-based storage is required. Metal organic frameworks (MOFs) belong to the category of crystalline porous materials that have seen rapid interest in the field of energy storage due to their large surface area, high pore volume, and modifiable structure. Therefore, advanced technologies employed in the construction of MOFs, such as solvothermal, mechanochemical, microwave assisted, and sonochemical methods are reviewed. Finally, this review discussed the selected factors and structural characteristics of MOFs, which affect the hydrogen capacity.
Collapse
Affiliation(s)
- John Letwaba
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Uwa Orji Uyor
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Mapula Lucey Mavhungu
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Nwoke Oji Achuka
- Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Patricia Abimbola Popoola
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| |
Collapse
|
2
|
Poupart R, Invernizzi R, Guerlou-Demourgues L, Olchowka J, Dourges MA, Bobet JL, Deleuze H, Backov R. Kraft Black Liquor as a Carbonaceous Source for the Generation of Porous Monolithic Materials and Applications toward Hydrogen Adsorption and Ultrastable Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16385-16394. [PMID: 37947824 DOI: 10.1021/acs.langmuir.3c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
High internal phase emulsions (HIPEs) have templated self-standing porous carbonaceous materials (carboHIPEs) while employing Kraft Black Liquor, a paper milling industry byproduct, as a carbon precursor source. As such, the starting emulsion has been prepared through a laboratory-made homogenizer, while native materials have been characterized at various length scales either with Raman spectrometry, X-ray diffraction (XRD), mercury intrusion porosimetry, and nitrogen absorption. After thermal carbonization, specific surface areas ranging from ∼600 m2 g-1 to 1500 m2 g-1 have been reached while maintaining a monolithic character. Despite a poor graphitization yield, the carbonaceous materials offer good electronic transport properties, reaching 31 S m-1. When tested toward energy storage applications, the native unwashed materials revealed a hydrogen storage of 0.07 wt % at 40 bar and room temperature (RT), while hydrogen retention is reaching 0.37 wt % at 40 bar and RT for the washed sample. When employed as supercapacitor electrodes, these carbonaceous foams are able to deliver high capacities of ∼140 F/g at 1 A/g, thereby matching the ones obtained from a commercial carbon reference, while additionally providing a restored remnant capacity of 120 F/g at 2 A/g over 5000 cycle numbers.
Collapse
Affiliation(s)
- Romain Poupart
- Universite de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
- Universite de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Universite de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Ronan Invernizzi
- Universite de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Universite de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Liliane Guerlou-Demourgues
- Universite de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Réseau Français sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Jacob Olchowka
- Universite de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Réseau Français sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Marie-Anne Dourges
- Universite de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Jean-Louis Bobet
- Universite de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Hervé Deleuze
- Universite de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Rénal Backov
- Universite de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
3
|
Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes (Basel) 2022. [DOI: 10.3390/pr10020304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the rapid growth in demand for effective and renewable energy, the hydrogen era has begun. To meet commercial requirements, efficient hydrogen storage techniques are required. So far, four techniques have been suggested for hydrogen storage: compressed storage, hydrogen liquefaction, chemical absorption, and physical adsorption. Currently, high-pressure compressed tanks are used in the industry; however, certain limitations such as high costs, safety concerns, undesirable amounts of occupied space, and low storage capacities are still challenges. Physical hydrogen adsorption is one of the most promising techniques; it uses porous adsorbents, which have material benefits such as low costs, high storage densities, and fast charging–discharging kinetics. During adsorption on material surfaces, hydrogen molecules weakly adsorb at the surface of adsorbents via long-range dispersion forces. The largest challenge in the hydrogen era is the development of progressive materials for efficient hydrogen storage. In designing efficient adsorbents, understanding interfacial interactions between hydrogen molecules and porous material surfaces is important. In this review, we briefly summarize a hydrogen storage technique based on US DOE classifications and examine hydrogen storage targets for feasible commercialization. We also address recent trends in the development of hydrogen storage materials. Lastly, we propose spillover mechanisms for efficient hydrogen storage using solid-state adsorbents.
Collapse
|
4
|
A Study on Electron Acceptor of Carbonaceous Materials for Highly Efficient Hydrogen Uptakes. Catalysts 2021. [DOI: 10.3390/catal11121524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Significant efforts have been directed toward the identification of carbonaceous materials that can be utilized for hydrogen uptake in order to develop on-board automotive systems with a gravimetric capacity of 5.5 wt.%, thus meeting the U.S. Department of Energy technical targets. However, the capacity of hydrogen storage is limited by the weak interaction between hydrogen molecules and the carbon surface. Cigarette butts, which are the most abundant form of primary plastic waste, remain an intractable environmental pollution problem. To transform this source of waste into a valuable adsorbent for hydrogen uptake, we prepared several forms of oxygen-rich cigarette butt-derived porous carbon (CGB-AC, with the activation temperature range of 600 and 900 °C). Our experimental investigation revealed that the specific surface area increased from 600 to 700 °C and then decreased as the temperature rose to 900 °C. In contrast, the oxygen contents gradually decreased with increasing activation temperature. CGB-AC700 had the highest H2 excess uptake (QExcess) of 8.54 wt.% at 77 K and 20 bar, which was much higher than that of porous carbon reported in the previous studies. We found that the dynamic interaction between the porosity and the oxygen content determined the hydrogen storage capacity. The underlying mechanisms proposed in the present study would be useful in the design of efficient hydrogen storage because they explain the interaction between positive carbonaceous materials and negative hydrogen molecules in quadrupole orbitals.
Collapse
|
5
|
Characterization of Carbon Materials for Hydrogen Storage and Compression. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon materials have proven to be a suitable choice for hydrogen storage and, recently, for hydrogen compression. Their developed textural properties, such as large surface area and high microporosity, are essential features for hydrogen adsorption. In this work, we first review recent advances in the physisorption characterization of nanoporous carbon materials. Among them, approaches based on the density functional theory are considered now standard methods for obtaining a reliable assessment of the pore size distribution (PSD) over the whole range from narrow micropores to mesopores. Both a high surface area and ultramicropores (pore width < 0.7 nm) are needed to achieve significant hydrogen adsorption at pressures below 1 MPa and 77 K. However, due to the wide PSD typical of activated carbons, it follows from an extensive literature review that pressures above 3 MP are needed to reach maximum excess uptakes in the range of ca. 7 wt.%. Finally, we present the adsorption–desorption compression technology, allowing hydrogen to be compressed at 70 MPa by cooling/heating cycles between 77 and 298 K, and being an alternative to mechanical compressors. The cyclic, thermally driven hydrogen compression might open a new scenario within the vast field of hydrogen applications.
Collapse
|
6
|
Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage. ENERGIES 2020. [DOI: 10.3390/en13092237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.
Collapse
|