1
|
Zhao J, Zeng D, Wang Q, Lin Z, Vogel F, Li W, Zhang P. Effects of a dual functional filler, polyethersulfone-g-carboxymethyl chitosan@MWCNT, for enhanced antifouling and penetration performance of PES composite membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121611. [PMID: 38959769 DOI: 10.1016/j.jenvman.2024.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ultrafiltration technology, separating water from impurities by the core membrane, is an effective strategy for treating wastewater to meet the ever-growing requirement of clean and drinking water. However, the similar nature of hydrophobic organic pollutants and the membrane surface leads to severe adsorption and aggregation, resulting unavoidable membrane degradation of penetration and rejection. The present study presents a novel block amphiphilic polymer, polyethersulfone-g-carboxymethyl chitosan@MWCNT (PES-g-CMC@MWCNT), which is synthesized by grafting hydrophobic polyethersulfone to hydrophilic carboxymethyl chitosan in order to suspend CMC in organic solution. A mixture of hydrophilic carboxymethyl chitosan and hydrophobic polymers (polyethersulfone), in which hydrophilic segments are bonded to hydrophobic segments, could provide hydrophilic groups, as well as gather and remain stable on membrane surfaces by their hydrophobic interaction for improved compatibility and durability. The resultant ultrafiltration membranes exhibit high water flux (198.10 L m-2·h-1), suitable hydrophilicity (64.77°), enhanced antifouling property (82.96%), while still maintains excellent rejection of bovine serum albumin (91.75%). There has also been an improvement in membrane cross-sectional morphology, resulting in more regular pores size (47.64 nm) and higher porosity (84.60%). These results indicate that amphiphilic polymer may be able to significantly promote antifouling and permeability of ultrafiltration membranes.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Dahai Zeng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Florian Vogel
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization Technology, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, Hainan Province, China; Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, Hainan Province, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Erragued R, Sharma M, Gando-Ferreira L, Bouaziz M. Recovery of Oleuropein from Olive Leaf Extract Using Zinc Oxide Coated by Polyaniline Nanoparticle Mixed Matrix Membranes. ACS OMEGA 2024; 9:4762-4774. [PMID: 38313486 PMCID: PMC10831993 DOI: 10.1021/acsomega.3c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
This study explores the integration of zinc oxide coated with polyaniline (ZnO-PANI) nanoparticles into a poly(ether sulfone) (PES) matrix to concurrently enhance permeate flux and oleuropein (OLP) rejection during the filtration of olive leaf extract (OLE). The effect of ZnO-PANI content on porosity, pore size, surface hydrophilicity, and pure water flux (PWF) was studied. The results indicate that an increase in ZnO-PANI content (0-0.2%) leads to a 3-fold increase in mean pore size, permeability (1.29-7.18 L/m2 h bar), porosity (72.2-77.8%), and improved surface hydrophilicity of the prepared membranes. Membrane performance was tested for OLE permeate flux of the OLE and total phenolic compounds (TPC) rejection at various pressures (10-30 bar), the performance of the OLP rejection at 30 bar, and fouling resistance. The 0.2 wt % ZnO-PANI membrane exhibits the highest permeate flux, while the 0.4 wt % ZnO-PANI membrane offers the highest rejection values (90-97% for TPC and 100% for OLP). Bare PES demonstrated the best fouling resistance. Strategic ZnO-PANI incorporation achieves a balance, enhancing both the flux and rejection efficiency. The 0.2 wt % ZnO-PANI membrane emerges as particularly favorable, striking a beneficial equilibrium between permeate flux and OLP rejection. Intriguingly, the use of these membranes for OLE filtration, postpretreatment with ultrafiltration (UF), results in a remarkable 100% rejection of OLP. This discovery underscores the significant and specific separation of OLP from OLE facilitated by a ZnO-PANI-based mixed matrix membrane (MMM). The study contributes valuable insights into the development of advanced membranes with enhanced filtration capabilities for high-added value phenolic compound separation.
Collapse
Affiliation(s)
- Rim Erragued
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Manorma Sharma
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Licínio
M. Gando-Ferreira
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
| |
Collapse
|
3
|
Sinha S, Kumar R, Anand J, Gupta R, Gupta A, Pant K, Dohare S, Tiwari P, Kesari KK, Krishnan S, Gupta PK. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS APPLIED NANO MATERIALS 2023; 6:12828-12848. [DOI: 10.1021/acsanm.3c01539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rhythm Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Akshima Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Sushil Dohare
- Department of Epidemiology, College of Public Health and Tropical Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Preeti Tiwari
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkari 1, Helsinki 00100, Finland
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Saravanan Krishnan
- Creative Carbon Laboratories Pvt Ltd., Chennai 600113, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
4
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
5
|
Behboudi A, Mohammadi T, Ulbricht M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Polylactic acid nanocomposites containing functionalized multiwalled carbon nanotubes as antimicrobial packaging materials. Int J Biol Macromol 2022; 213:55-69. [DOI: 10.1016/j.ijbiomac.2022.05.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
|
7
|
Zhang Y, Wang C, Zhang L, Shi J, Yuan H, Lu J. Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Multiwall carbon nanotubes (MWCNTs) are often used to modify polymer membranes as additives, however, MWCNTs are easy to agglomerate and entangle in polymer matrix due to their own strong van der Waals force. MWCNTs were doubly modified by bonding octadecylamine (ODA) and SiO2 through the respective amidation and esterification reactions to prepare SiO2-MWCNT-ODA nanocomposites. The amino groups on ODA were amidated with the carboxyl groups on MWCNT-COOH. Then the hydroxyl groups on SiO2 were bonded to MWCNT-COOH through esterification to obtain SiO2-MWCNT-ODA nanocomposites. PES/SiO2-MWCNT-ODA composite ultrafiltration (UF) membrane was prepared by non-solvent induced phase separation (NIPS) method. SiO2-MWCNT-ODA nanocomposites and PES/SiO2-MWCNT-ODA membrane were characterized by FTIR, XRD, TGA, and SEM, etc. The results showed that PES/SiO2-MWCNT-ODA membrane had significantly improved permeability, rejection, and antifouling properties for comparison with PES membrane. The pure water flux of PES/Nano.2-0.5 reached 212.5 L m−2 h−1, which was approximately 2.6 times than that of PES membrane, and the rejection of BSA protein for composite membrane was as high as 94.2%. PES/SiO2-MWCNT-ODA composite membrane had excellent antifouling performance and the flux recovery rate (FRR) of PES/Nano.2-0.5 membrane could still maintain at higher value of 84.82% after two cycles in the antifouling test.
Collapse
Affiliation(s)
- Yadi Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Chengcong Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Lijuan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Jianghuan Shi
- Ningbo Institute of Metrology , Ningbo 315048 , China
| | - Haikuan Yuan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Jie Lu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China
| |
Collapse
|
8
|
Electrospun Composite Nanofiltration Membranes for Arsenic Removal. Polymers (Basel) 2022; 14:polym14101980. [PMID: 35631863 PMCID: PMC9147594 DOI: 10.3390/polym14101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, significant attention has been paid towards the study and application of mixed matrix nanofibrous membranes for water treatment. The focus of this study is to develop and characterize functional polysulfone (PSf)-based composite nanofiltration (NF) membranes comprising two different oxides, such as graphene oxide (GO) and zinc oxide (ZnO) for arsenic removal from water. PSf/GO- and PSf/ZnO-mixed matrix NF membranes were fabricated using the electrospinning technique, and subsequently examined for their physicochemical properties and evaluated for their performance for arsenite–As(III) and arsenate–As(V) rejection. The effect of GO and ZnO on the morphology, hierarchical structure, and hydrophilicity of fabricated membranes was studied using a scanning electron microscope (SEM), small and ultra-small angle neutron scattering (USANS and SANS), contact angle, zeta potential, and BET (Brunauer, Emmett and Teller) surface area analysis. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to study the elemental compositions and polymer-oxide interaction in the membranes. The incorporation of GO and ZnO in PSf matrix reduced the fiber diameter but increased the porosity, hydrophilicity, and surface negative charge of the membranes. Among five membrane systems, PSf with 1% ZnO has the highest water permeability of 13, 13 and 11 L h−1 m−2 bar−1 for pure water, As(III), and As(V)-contaminated water, respectively. The composite NF membranes of PSf and ZnO exhibited enhanced (more than twice) arsenite removal (at 5 bar pressure) of 71% as compared to pristine PSf membranes, at 43%, whereas both membranes showed only a 27% removal for arsenate.
Collapse
|
9
|
Fahrina A, Arahman N, Aprilia S, Bilad MR, Silmina S, Sari WP, Sari IM, Gunawan P, Pasaoglu ME, Vatanpour V, Koyuncu I, Rajabzadeh S. Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane. Polymers (Basel) 2022; 14:polym14091908. [PMID: 35567077 PMCID: PMC9102394 DOI: 10.3390/polym14091908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Banda Aceh 23111, Indonesia
- Atsiri Research Center, PUI, Universitas Syiah Kuala, Jl. Syeh A Rauf, No. 5, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam;
| | - Silmina Silmina
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Widia Puspita Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Indah Maulana Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Poernomo Gunawan
- School of Chemical and Biomedical Engineering, Nanyang Technological, University Singapore, Singapore 627833, Singapore;
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
| | - Saeid Rajabzadeh
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan;
| |
Collapse
|
10
|
Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. ENVIRONMENTAL RESEARCH 2022; 207:112202. [PMID: 34655607 DOI: 10.1016/j.envres.2021.112202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Javad Ghanei
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 0019, India.
| |
Collapse
|
11
|
Novel polycarbonate membrane embedded with multi-walled carbon nanotube for water treatment: a comparative study between bovine serum albumin and humic acid removal. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Arumugham T, Ouda M, Krishnamoorthy R, Hai A, Gnanasundaram N, Hasan SW, Banat F. Surface-engineered polyethersulfone membranes with inherent Fe-Mn bimetallic oxides for improved permeability and antifouling capability. ENVIRONMENTAL RESEARCH 2022; 204:112390. [PMID: 34838760 DOI: 10.1016/j.envres.2021.112390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Mariam Ouda
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nirmala Gnanasundaram
- Mass Transfer Lab, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
oulad F, Zinadini S, Akbar Zinatizadeh A, Ashraf Derakhshan A. Preparation and characterization of high permeance functionalized nanofiltration membranes with antifouling properties by using diazotization route and potential application for licorice wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Antimicrobial Hydrophilic Membrane Formed by Incorporation of Polymeric Surfactant and Patchouli Oil. Polymers (Basel) 2021; 13:polym13223872. [PMID: 34833171 PMCID: PMC8624874 DOI: 10.3390/polym13223872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Membrane properties are highly affected by the composition of the polymer solutions that make up the membrane material and their influence in the filtration performance on the separation or purification process. This paper studies the effects of the addition of pluronic (Plu) and patchouli oil (PO) in a polyethersulfone (PES) solution on the membrane morphology, membrane hydrophilicity, and filtration performance in the pesticide removal compound in the water sample. Three types of membranes with the composition of PES, PES + Plu, and PES + Plu + patchouli oil were prepared through a polymer phase inversion technique in an aqueous solvent. The resulting membranes were then analyzed and tested for their mechanical properties, hydrophilicity, antimicrobial properties, and filtration performance (cross-flow ultrafiltration). The results show that all of the prepared membranes could reject 75% of the pesticide. The modification of the PES membrane with Plu was shown to increase the overall pore size by altering the pore morphology of the pristine PES, which eventually increased the permeation flux of the ultrafiltration process. Furthermore, patchouli oil added antimicrobial properties, potentially minimizing the biofilm formation on the membrane surface.
Collapse
|
15
|
Arahman N, Rosnelly CM, Yusni Y, Fahrina A, Silmina S, Ambarita AC, Bilad MR, Gunawan P, Rajabzadeh S, Takagi R, Matsuyama H, Aziz M. Ultrafiltration of α-Lactalbumin Protein: Acquaintance of the Filtration Performance by Membrane Structure and Surface Alteration. Polymers (Basel) 2021; 13:3632. [PMID: 34771192 PMCID: PMC8587019 DOI: 10.3390/polym13213632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
α-Lactalbumin is an essential protein with multiple roles in physiological and the nutritional functionalities, such as diabetic prevention, blood pressure stabilization, and cancer cell inhibition. In the present work, polyethersulfone (PES)-based membranes were developed by incorporating Pluronic F127 and carbon nanotubes with single- and multi-walled dimensions (Sw-Cnts and Mw-Cnts) as additives. The resulting membranes were evaluated for use in the filtration of α-lactalbumin protein solution. Four series of membranes, including PES pristine membrane, were fabricated via the phase inversion process. The characteristics of the membrane samples were analyzed in terms of morphology, membrane surface hydrophilicity and roughness, and surface chemistry. The characterization results show that the incorporation of additive increased the surface wettability by reducing the surface water contact angle from 80.4° to 64.1° by adding F127 and Mw-Cnt additives. The highest pure water permeability of 135 L/(m2·h·bar) was also exhibited by the PES/F127/Mw-Cnt membrane. The performance of the modified membranes was clearly better than the pristine PSF for α-lactalbumin solution filtration. The permeability of α-lactalbumin solution increased from 9.0 L/(m2·h·bar) for the pristine PES membrane to 10.5, 11.0 and 11.5 L/(m2·h·bar) for membranes loaded with Pluronic F127, Sw-Cnts, and Mw-Cnts, respectively. Those increments corresponded to 17, 22, and 28%. Such increments could be achieved without altering the α-lactalbumin rejections of 80%. Remarkably, the rejection for the membrane loaded with Sw-Cnts even increased to 89%.
Collapse
Affiliation(s)
- Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (C.M.R.); (S.S.)
- Magister Program of Environmental Management, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Darussalam, Banda Aceh 23111, Indonesia
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (A.F.); (A.C.A.)
| | - Cut Meurah Rosnelly
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (C.M.R.); (S.S.)
- Magister Program of Environmental Management, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Darussalam, Banda Aceh 23111, Indonesia
| | - Yusni Yusni
- Department of Physiology, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Afrillia Fahrina
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (A.F.); (A.C.A.)
| | - Silmina Silmina
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (C.M.R.); (S.S.)
| | - Aulia Chintia Ambarita
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (A.F.); (A.C.A.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Poernomo Gunawan
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 627833, Singapore;
| | - Saeid Rajabzadeh
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan; (S.R.); (R.T.); (H.M.)
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan; (S.R.); (R.T.); (H.M.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan; (S.R.); (R.T.); (H.M.)
| | - Muhammad Aziz
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;
| |
Collapse
|
16
|
Al-Shaeli M, Smith SJ, Jiang S, Wang H, Zhang K, Ladewig BP. Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Shoparwe NF, Kee LC, Otitoju TA, Shukor H, Zainuddin N, Makhtar MMZ. Removal of Humic Acid Using 3-Methacryloxypropyl Trimethoxysilane Functionalized MWCNT Loaded TiO 2/PES Hybrid Membrane. MEMBRANES 2021; 11:721. [PMID: 34564538 PMCID: PMC8470582 DOI: 10.3390/membranes11090721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
In the present work, a highly efficient mixed matrix membrane (MMM) for humic acid (HA) removal was developed. Multiwalled carbon nanotubes (MWCNTs) were functionalized in the presence of 3-methacryloxypropyl trimethoxysilane using the co-condensation method and were subsequently loaded with TiO2 (prepared via the sol-gel route). The as-prepared material was then incorporated into a PES polymer solution to prepare a fMWCNT-TiO2/PES hybrid membrane via non-solvent induced phase inversion. The microstructure of the membrane was characterized using Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, water contact angle, thickness, porosity, and pore size. The fMWCNT-TiO2/PES hybrid membrane was tested for the removal of HA and antifouling performance. The results show that the surface hydrophilicity of the membranes was greatly improved upon the addition of the fMWCNT-TiO2 particles. The results show that 92% of HA was effectively removed after 1 h of filtration. In comparison with pristine membrane, the incorporation of fMWCNT-TiO2 nanoparticles led to enhanced pure water flux (99.05 L/m2 h), permeate flux (62.01 L/m2 h), higher HA rejection (92%), and antifouling improvement (RFR: 37.40%, FRR: 86.02%). Thus, the fMWCNT-TiO2/PES hybrid membrane is considered to be a great potential membrane for the improvement of ultrafiltration membranes.
Collapse
Affiliation(s)
- Noor Fazliani Shoparwe
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia; (N.F.S.); (L.-C.K.); (T.A.O.)
| | - Lim-Cee Kee
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia; (N.F.S.); (L.-C.K.); (T.A.O.)
| | - Tunmise Ayode Otitoju
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia; (N.F.S.); (L.-C.K.); (T.A.O.)
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hafiza Shukor
- Centre of Excellence For Biomass Utilization (CoEBU), Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia;
| | - Nor’Izzah Zainuddin
- Indah Water Konsortium, Lorong Perda Utama 13, Bukit Mertajam 14300, Pulau Pinang, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Fellow of Center for Global Sustainability Studies, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
| |
Collapse
|
18
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Fahrina A, Yusuf M, Muchtar S, Fitriani F, Mulyati S, Aprilia S, Rosnelly CM, Bilad MR, Ismail AF, Takagi R, Matsuyama H, Arahman N. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Sathya U, Keerthi P, Nithya M, Balasubramanian N. Development of photochemical integrated submerged membrane bioreactor for textile dyeing wastewater treatment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:885-896. [PMID: 32335846 DOI: 10.1007/s10653-020-00570-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
A pilot-scale photocatalytic membrane bioreactor (PMBR) was developed for the treatment of textile dyeing wastewater. The PMBR is made of mild steel rectangular reactor of photocatalytic unit and polyethersulphone submerged hollow fibre membrane bioreactor unit with the working volume of about 20 L. For easy recovery, the tungsten oxide (WO3) and WO3/1% graphene oxide (GO)-powdered photocatalyst were made into bead and immersed in photocatalytic reactor. Graphene oxide incorporation has shown better results in decolourisation and degradation when compared with WO3 alginate alone. The incorporation of GO into WO3 minimises the recombination of photogenerated electron-hole pairs. The operating conditions such as 3 h of contact time for photocatalysis reaction (WO3/1% GO), 10 h hydraulic retention time for MBR and 100 kPa of transmembrane pressure were optimised. Chemical oxygen demand removal efficiency of 48% was attained with photocatalysis, and the removal efficiency was further increased up to 76% when integrated with MBR. The colour removal efficiency after photocatalysis was 25% further increased up to 70% with MBR. Complete total suspended solid removal has been achieved with this hybrid system.
Collapse
Affiliation(s)
- U Sathya
- Environmental Science and Engineering Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
- Department of Chemistry, CEG Campus, Anna University, Chennai, 600 025, India
| | - P Keerthi
- Department of Chemistry, CEG Campus, Anna University, Chennai, 600 025, India.
| | - M Nithya
- Department of Chemistry, CEG Campus, Anna University, Chennai, 600 025, India
| | - N Balasubramanian
- Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai, 600 025, India
| |
Collapse
|
22
|
Fahrina A, Arahman N, Mulyati S, Aprilia S, Mat Nawi NI, Aqsha A, Bilad MR, Takagi R, Matsuyama H. Development of Polyvinylidene Fluoride Membrane by Incorporating Bio-Based Ginger Extract as Additive. Polymers (Basel) 2020; 12:polym12092003. [PMID: 32899138 PMCID: PMC7565109 DOI: 10.3390/polym12092003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023] Open
Abstract
Biofouling on the membrane surface leads to performance deficiencies in membrane filtration. In this study, the application of ginger extract as a bio-based additive to enhance membrane antibiofouling properties was investigated. The extract was dispersed in a dimethyl acetamide (DMAc) solvent together with polyvinylidene fluoride (PVDF) to enhance biofouling resistance of the resulting membrane due to its antibiotic property. The concentrations of the ginger extract in the dope solution were varied in the range of 0–0.1 wt %. The antibacterial property of the resulting membranes was assessed using the Kirby Bauer disc diffusion method. The results show an inhibition zone formed around the PVDF/ginger membrane against Escherichia coli and Staphylococcus aureus demonstrating the efficacy of the residual ginger extract in the membrane matrix to impose the antibiofouling property. The addition of the ginger extract also enhanced the hydrophilicity in the membrane surface by lowering the contact angle from 93° to 85°, which was in good agreement with the increase in the pure water flux of up to 62%.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (A.F.); (S.M.); (S.A.)
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7., Banda Aceh 23111, Indonesia
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (A.F.); (S.M.); (S.A.)
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7., Banda Aceh 23111, Indonesia
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk Chik Pante Kulu No. 5, Darussalam, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Darussalam, Banda Aceh 23111, Indonesia
- Atsiri Research Center, Universitas Syiah Kuala, Jl. Syeh A. Rauf, Darussalam, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Sri Mulyati
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (A.F.); (S.M.); (S.A.)
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7., Banda Aceh 23111, Indonesia
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk Chik Pante Kulu No. 5, Darussalam, Banda Aceh 23111, Indonesia
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (A.F.); (S.M.); (S.A.)
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7., Banda Aceh 23111, Indonesia
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk Chik Pante Kulu No. 5, Darussalam, Banda Aceh 23111, Indonesia
| | - Normi Izati Mat Nawi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (A.A.); (M.R.B.)
| | - Aqsha Aqsha
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (A.A.); (M.R.B.)
- HiCoE-Center for Biofuel and Biochemical Research (CBBR), Institute for Self-Sustainable Building, Seri Iskandar, Perak 32610, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (A.A.); (M.R.B.)
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan; (R.T.); (H.M.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan; (R.T.); (H.M.)
| |
Collapse
|
23
|
Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht M. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F. Employing magnetism of Fe 3O 4 and hydrophilicity of ZrO 2 to mitigate biofouling in magnetic MBR by Fe 3O 4-coated ZrO 2/PAN nanocomposite membrane. ENVIRONMENTAL TECHNOLOGY 2020; 41:2683-2704. [PMID: 30741624 DOI: 10.1080/09593330.2019.1579870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of this research is benefiting from the synergistic effect of the simultaneous presence of Fe3O4 and ZrO2 in the form of Fe3O4-coated ZrO2 (Fe3O4@ZrO2) nanoparticles within the structure of PAN membrane to reduce membrane fouling. The role of Fe3O4 nanoparticles in increasing the pore size and magnetic saturation as well as the role of ZrO2 in decreasing surface roughness and hydrophobicity can mitigate membrane fouling in magnetic-assisted membrane bioreactors. For this purpose, Fe3O4, ZrO2, and Fe3O4@ZrO2 nanoparticles were embedded into PAN membrane structure and magnetic (M nM), hydrophilic (H nM), and magnetic-hydrophilic (HM nM) membranes were synthesized. H 1M (1ZrO2/PAN) membrane with a contact angle of 31 degrees, M 1N (1Fe3O4/PAN) with a pore size of 90 nm, and H 3M (3ZrO2/PAN) membrane with an RMS roughness of 13.5 nm were the most hydrophilic, porous, and smoothest membranes, respectively. High sensitivity to magnetic field along with high porosity, high hydrophilicity and low surface roughness simultaneously exist within the structure of MHMs membranes, such that MH 1M (1Fe3O4@ZrO2/PAN) indicated 116% greater flux, 121% greater flux recovery, and 85% less total filtration resistance in comparison with the blank membrane in magnetic membrane bioreactor, at a magnetic field intensity of 120 mT and MLSS = 10,000 mg/l. As an overall conclusion, the output of this research was compared with other research in term of normalized flux. Results reveal that at MLSS = 10,000 mg/l, HRT = 8 h and TMP = 0.3 bar, MH 1M membrane has normalized flux equal to 1.56 g/m2 h bar which is an acceptable value compared to normalized flux reported by other researchers.
Collapse
Affiliation(s)
- Amin Noormohamadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
25
|
Improved permeation, separation and antifouling performance of customized polyacrylonitrile ultrafiltration membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Sokhandan F, Homayoonfal M, Davar F. Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater. BIOFOULING 2020; 36:660-678. [PMID: 32752888 DOI: 10.1080/08927014.2020.1798934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51 l m-2 h-1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35 days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.
Collapse
Affiliation(s)
- Fatemeh Sokhandan
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
27
|
Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Kumari P, Modi A, Bellare J. Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Wang C, Cao G, Zhao T, Wang X, Niu X, Fan Y, Li X. Terminal Group Modification of Carbon Nanotubes Determines Covalently Bound Osteogenic Peptide Performance. ACS Biomater Sci Eng 2020; 6:865-878. [PMID: 33464866 DOI: 10.1021/acsbiomaterials.9b01501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteogenic peptides are often introduced to improve biological activities and the osteogenic ability of artificial bone materials as an effective approach. Covalent bindings between the peptide and the host material can increase the molecular interactions and make the functionalized surface more stable. However, covalent bindings through different functional groups can bring different effects on the overall bioactivities. In this study, carboxyl and amino groups were respectively introduced onto carbon nanotubes, a nanoreinforcement for synthetic scaffold materials, which were subsequently covalently attached to the RGD/BMP-2 osteogenic peptide. MC3T3-E1 cells were cultured on scaffolds containing peptide-modified carbon nanotubes. The results showed that the peptide through the amino group binding could promote cell functions more effectively than those through carboxyl groups. The mechanism may be that the amino group could bring more positive charges to carbon nanotube surfaces, which further led to differences in the peptide conformation, protein adsorption, and targeting osteogenic effects. Our results provided an effective way of improving the bioactivities of artificial bone materials by chemically binding osteogenic peptides.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Tianxiao Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
30
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 511] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
31
|
Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2014-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Chong WC, Mohammad AW, Mahmoudi E, Chung YT, Kamarudin KF, Takriff MS. Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Jabbari B, Jalilnejad E, Ghasemzadeh K, Iulianelli A. Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen. MEMBRANES 2019; 9:membranes9080100. [PMID: 31405178 PMCID: PMC6723787 DOI: 10.3390/membranes9080100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future.
Collapse
Affiliation(s)
- Bahman Jabbari
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran.
| | - Kamran Ghasemzadeh
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (CNR-ITM), via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
34
|
Study on the structure and properties of PPS/PCNF hybrid membranes and their applications in wastewater treatment. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Yaghoubi Z, Parsa JB. Preparation of thermo-responsive PNIPAAm-MWCNT membranes and evaluation of its antifouling properties in dairy wastewater. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109779. [PMID: 31349494 DOI: 10.1016/j.msec.2019.109779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 01/08/2023]
Abstract
A novel MWCNT-PNIPAAm nanocomposite membrane was developed with an excellent cleaning efficiency of thermo-responsive surface. The thermo-responsive N-isopropyle acryleamide (NIPAAm) monomer was polymerized on the surface of MWCNT via free radical polymerization. The prepared MWCNT-PNIPAAm nanocomposite was characterized by FTIR, SEM and TGA analyses. Various amounts of the prepared nanocomposite were incorporated into the membrane matrix by the physical blending method. The resultant membranes showed better surface wettability and pure water flux compared to pristine Polyethersulfone (PES) membrane. Furthermore, after filtration, the COD value of dairy wastewater was reduced to around 90% for all membranes. The thermo-responsive cleaning method was employed to investigate the cleaning efficiency of MWCNT-PNIPAAm membrane for dairy wastewater. The 99.9% flux recovery ratio was obtained for MWCNT-PNIPAAm-0.05% membranes. All these results confirmed that the presence of MWCNT-PNIPAAm nanocomposite in the membrane matrix improves the membrane hydrophilicity and antifouling properties.
Collapse
Affiliation(s)
- Zeynab Yaghoubi
- Department of Applied Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174-38683, Iran
| | - Jalal Basiri Parsa
- Department of Applied Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174-38683, Iran.
| |
Collapse
|
36
|
Song G, Luo K, Yu J, Wang Y, Zhu J, Hu Z. High performance ultrafiltration composite membranes based on nanofibrous substrate with PDA coating and TAPS-NA immobilization. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1599942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guocheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Kaiju Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
37
|
Liang X, Wang P, Wang J, Zhang Y, Wu W, Liu J, Van der Bruggen B. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ghalamchi L, Aber S, Vatanpour V, Kian M. A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Hamedi H, Ehteshami M, Mirbagheri SA, Rasouli SA, Zendehboudi S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamideh Hamedi
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Majid Ehteshami
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
| | | | - Seyed Abbas Rasouli
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
40
|
Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Bahnemann DW. A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Xu SJ, Chen GE, Xu ZL. Excellent anti-fouling performance of PVDF polymeric membrane modified by enhanced CaA gel-layer. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Membrane Bioreactors for Wastewater Treatment. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Suddai A, Nuengmatcha P, Sricharoen P, Limchoowong N, Chanthai S. Feasibility of hard acid–base affinity for the pronounced adsorption capacity of manganese(ii) using amino-functionalized graphene oxide. RSC Adv 2018. [DOI: 10.1039/c7ra12999h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study reveals the feasibility of using graphene oxide (GO) functionalized with 3-mercaptopropyl-trimethoxysilane (APTMS) for the removal of Mn(ii) from aqueous solution. The APTMS bound on GO's surface was successfully confirmed by FTIR and EDX.
Collapse
Affiliation(s)
- Anek Suddai
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Prawit Nuengmatcha
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Phitchan Sricharoen
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Nunticha Limchoowong
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Saksit Chanthai
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| |
Collapse
|
47
|
Mohamadi Z, Abdolmaleki A. Heavy metal remediation via poly(3,4-ethylene dioxythiophene) deposition onto neat and sulfonated nonwoven poly(ether sulfone). J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Basri H, Irfan M, Irfan M, Lau WJ, Kartohardjono S. Quantitative analysis of MWCNT agglomeration in polymeric-based membranes using atomic force microscope. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hatijah Basri
- Department of Science; Faculty of Science, Technology and Human Development; Universiti Tun Hussein Onn Malaysia; Parit Raja, Batu Pahat 86400 Johor Malaysia
| | - Masooma Irfan
- Department of Science; Faculty of Science, Technology and Human Development; Universiti Tun Hussein Onn Malaysia; Parit Raja, Batu Pahat 86400 Johor Malaysia
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; Skudai 81310 Johor Malaysia
| | - Muhammad Irfan
- Department of Bioprocess Engineering; Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; Skudai 81310 Johor Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; Skudai 81310 Johor Malaysia
| | - Sutrasno Kartohardjono
- Process Intensification Laboratory; Department of Chemical Engineering; Universitas Indonesia; Depok 16424 Indonesia
| |
Collapse
|
49
|
Rahimi Z, Zinatizadeh A, Zinadini S. Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe 3 O 4 /PVDF ultrafiltration membrane. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
|