1
|
Ingole PG. Inner‐coated highly selective thin film nanocomposite hollow fiber membranes for the mixture gas separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pravin G. Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division CSIR‐North East Institute of Science and Technology Jorhat India
| |
Collapse
|
2
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Structurally ordered nanofiltration membranes prepared by spatially anchoring interfacial polymerization for highly efficient separation properties. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0837-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Trentini A, da Silva Biron D, Duarte J, dos Santos V. Polyurethane membranes reinforced with calcium carbonate and oyster powder for application in the separation of CH4/CO2 from greenhouse gases. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Choi O, Kim Y, Jeon JD, Kim TH. Preparation of thin film nanocomposite hollow fiber membranes with polydopamine-encapsulated Engelhard titanosilicate-4 for gas separation applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Liu Y, Cui X, Yan W, Su J, Duan F, Jin L. Analysis of pressure-driven water vapor separation in hollow fiber composite membrane for air dehumidification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG. Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118212] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Shirke YM, Abou-Elanwar AM, Choi WK, Lee H, Hong SU, Lee HK, Jeon JD. Influence of nitrogen/phosphorus-doped carbon dots on polyamide thin film membranes for water vapor/N 2 mixture gas separation. RSC Adv 2019; 9:32121-32129. [PMID: 35530796 PMCID: PMC9072930 DOI: 10.1039/c9ra06300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles have been attracting attention because they can significantly improve the performance of membranes when added in small amounts. In this study, the effect of polyamide membranes incorporating hydrophilic nitrogen/phosphorus-doped carbon dots (NP-CDs) to enhance water vapor/N2 separation has been investigated. NP-CD nanoparticles with many hydrophilic functional groups are synthesized from chitosan by a one-pot green method and introduced to the surface of the polysulfone (PSf) substrates by interfacial polymerization reaction. The mean particle diameter of NP-CDs, estimated from transmission electron microscopy images, is 2.6 nm. By adding NP-CDs (0–1.5 wt%) to the polyamide layer, the contact angles of the membranes dramatically decreased from 65° (PSf) to <9° (thin film nanocomposite (TFN)), which means that the TFN membranes become significantly hydrophilic. From the water vapor separation results, the addition of NP-CDs in the polyamide layer improves the water vapor permeance from 1511 (thin film composite (TFC) without nanoparticles) to 2448 GPU (TFN with 1.0 wt% NP-CD loading, CD-TFN(1.0)) and the water vapor/N2 selectivity from 73 (TFC) to 854 (CD-TFN(1.0)). To our knowledge, this is the first study of highly functionalized NP-CD-incorporated polyamide membranes to enhance water vapor separation. Nanoparticles have been attracting attention because they can significantly improve the performance of membranes when added in small amounts.![]()
Collapse
Affiliation(s)
- Yogita M Shirke
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea .,Department of Advanced Energy and Technology Korea, University of Science and Technology (UST) 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Ali M Abou-Elanwar
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea .,Department of Advanced Energy and Technology Korea, University of Science and Technology (UST) 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea.,Chemical Engineering Pilot Plant Department, Engineering Research Division, National Research Centre Cairo 12622 Egypt
| | - Won-Kil Choi
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Hyojin Lee
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Seong Uk Hong
- Department of Chemical and Biological Engineering, Hanbat National University 125 Dongseodero, Yuseong-gu Daejeon 34158 Republic of Korea
| | - Hyung Keun Lee
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Jae-Deok Jeon
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| |
Collapse
|
9
|
Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Chaudhari S, Kwon Y, Shon M, Nam S, Park Y. Stability and pervaporation characteristics of PVA and its blend with PVAm membranes in a ternary feed mixture containing highly reactive epichlorohydrin. RSC Adv 2019; 9:5908-5917. [PMID: 35517247 PMCID: PMC9060864 DOI: 10.1039/c8ra07136e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/11/2019] [Indexed: 02/03/2023] Open
Abstract
In order to find an alternative for classical distillation in the recovery of ECH/IPA from azeotropic ECH/IPA/water (50/30/20 w/w, %) mixtures, a pervaporation process has been applied. Membranes from the crosslinking of poly(vinyl alcohol)/poly(vinyl amine) (PVA/PVAm) were prepared, and then the membrane stability and pervaporation efficiency of the crosslinked PVA/PVAm membranes were studied for highly reactive ECH systems containing a ternary feed mixture. From the Fourier-transform infrared (FT-IR) spectroscopy analysis, it was observed that all of the membranes were chemically stable for 15 days of immersion in a 50 : 30 : 20 ECH/IPA/water (w/w, %) feed mixture at 60 °C. The degree of membrane swelling increased with increasing PVAm content in the membrane composition, water content in the feed composition, and feed temperature, which was attributed to the increase in the number of hydrophilic sites in the membrane. The field-emission scanning electron microscopy (FE-SEM) study revealed that higher PVAm content membranes (PVAm1.0 and PVAm1.5) show polymer phase extraction in ECH/IPA/water (50 : 30 : 20) (w/w, %) at 60 °C in long-term stability tests. The pervaporation dehydration characteristics for all of the membranes with the feed comprising an ECH/IPA/water (50 : 30 : 20 by weight) azeotropic mixture at 30 °C were examined and excellent pervaporation dehydration efficiency was found. Quantitatively, the flux increased from 0.025 to 0.32 kg (m2 h)-1 and the separation factor decreased from 1908 to 60 with increasing PVAm content in the blended membrane.
Collapse
Affiliation(s)
- Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - YongSung Kwon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
11
|
|
12
|
Monsef K, Homayoonfal M, Davar F. Coating carboxylic and sulfate functional groups on ZrO2 nanoparticles: Antifouling enhancement of nanocomposite membranes during water treatment. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
An X, Ingole PG, Choi WK, Lee HK, Hong SU, Jeon JD. Development of thin film nanocomposite membranes incorporated with sulfated β-cyclodextrin for water vapor/N 2 mixture gas separation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Synthesis of superhydrophilic Nafion based nanocomposite hollow fiber membranes for water vapor separation. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|