1
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Le Saux S, Aubert‐Pouëssel A, Ouchait L, Mohamed KE, Martineau P, Guglielmi L, Devoisselle J, Legrand P, Chopineau J, Morille M. Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah Le Saux
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | - Lyria Ouchait
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | | | | | | | | | - Joël Chopineau
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | - Marie Morille
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| |
Collapse
|
3
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
5
|
Yang R, Liu S, Wu Z, Tan Y, Sun S. Core-shell assay based aptasensor for sensitive and selective thrombin detection using dark-field microscopy. Talanta 2018; 182:348-353. [PMID: 29501163 DOI: 10.1016/j.talanta.2018.01.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
Abstract
In this work, we developed a robust and ultrasensitive bio-sensor based on the target-aptamer recognition strategy and microscopic enumeration of gold nanoparticles (AuNPs) using dark field microscopy (DFM). The aptasensor with a core-shell structure consisting of a magnetic bead (MB), aptamer and AuNPs was fabricated by complementary hybridization of the DNA probe on the AuNPs surface to the aptamer coupled to the MB. Upon addition of the target molecule, the strong interaction between the aptamer and the target molecule, thrombin, results in the release of the AuNPs from the MB. The quantities of thrombin is therefore linearly correlated to the number of the released AuNPs, which can be digitally counted using DFM. To demonstrate the feasible use of the aptasensor for target detection, thrombin was evaluated as the model target. The limit of detection was determined to be 2.54 fM with dynamic range of 6 fM-100 fM. When the concentration of thrombin exceeded 100 fM, the counted number of AuNPs didn't correlate linearly to molecules of thrombin anymore, as the nanoparticles aggregated partly due to high concentration. However, the color of the solution changes to purple and the concentration of free AuNPs can be conveniently quantified by UV-Vis spectroscopy for up to 100 nM. It is noteworthy that our aptasensor is very easy to operate and requires neither complex isolation and amplification processes nor expensive instruments and consumables. Furthermore, this strategy can be easily generalized to other targets by replacing the corresponding aptamers and show great potential for the detection of biomarkers in clinical samples.
Collapse
Affiliation(s)
- Rui Yang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shuwen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhenjie Wu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China; Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ying Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Shuqing Sun
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China; Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
6
|
Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep 2017; 7:13572. [PMID: 29051620 PMCID: PMC5648795 DOI: 10.1038/s41598-017-14127-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus causes fatal infections in humans, and antibiotics are commonly used in treatment regimens against V. vulnificus infection. However, the therapeutic effects of antibiotics are limited by multidrug resistance. In this study, we demonstrated that an antimicrobial peptide (AMP), HPA3PHis, loaded onto a gold nanoparticle-DNA aptamer (AuNP-Apt) conjugate (AuNP-Apt-HPA3PHis) is an effective therapeutic tool against V. vulnificus infection in vivo in mice. HPA3PHis induced bacterial cell death through the disruption of membrane integrity of V. vulnificus. The introduction of AuNP-Apt-HPA3PHis into V. vulnificus-infected HeLa cells dramatically reduced intracellular V. vulnificus by 90%, leading to an increase in the viability of the infected cells. Moreover, when V. vulnificus-infected mice were intravenously injected with AuNP-Apt-HPA3PHis, a complete inhibition of V. vulnificus colonization was observed in the mouse organs, leading to a 100% survival rate among the treated mice, whereas all the control mice died within 40 hours of being infected. Therefore, this study demonstrated the potential of an AMP delivered by AuNP-Apt as an effective and rapid treatment option against infection caused by a major pathogen in humans and aquatic animals.
Collapse
|
7
|
González-Ruíz A, Ferro-Flores G, Azorín-Vega E, Ocampo-García B, Ramírez FDM, Santos-Cuevas C, De León-Rodríguez L, Isaac-Olivé K, Luna-Gutiérrez M, Morales-Ávila E. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|