1
|
He J, Zhou G, Sun B, Yan L, Lang X, Yang Y, Hao H. Graphene quantum dots induced performance enhancement in memristors. NANOSCALE 2025. [PMID: 40433677 DOI: 10.1039/d5nr00597c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
With the rapid development of information technology, the demand for miniaturization, integration, and intelligence of electronic devices is growing rapidly. As a key device in the non-von Neumann architecture, memristors can perform computations while storing data, enhancing computational efficiency and reducing power consumption. Memristors have become pivotal in driving the advancement of artificial intelligence (AI) and Internet of Things technologies. Combining the electronic properties of graphene with the size effects of quantum dots, graphene quantum dot (GQD)-based memristors exhibit potential applications in constructing brain-inspired neuromorphic computing systems and achieving AI hardware acceleration, making them a focal point of research interest. This review provides an overview of the preparation, mechanism, and application of GQD-based memristors. Initially, the structure, properties, and synthesis methods of GQDs are introduced in detail. Subsequently, the memristive mechanisms of GQD-based memristors are presented from three perspectives: the metal conductive filament mechanism, the electron trapping and detrapping mechanism, and the oxygen vacancy conductive filament mechanism. Furthermore, the different application scenarios of GQD-based memristors in both digital and analog types are summarized, encompassing information storage, brain-like artificial synapses, visual perception systems, and brain-machine interfaces. Finally, the challenges and future development prospects of GQD-based memristors are discussed.
Collapse
Affiliation(s)
- Jintao He
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guangdong Zhou
- College of Artificial Intelligence Brain-Inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing 400715, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lingpeng Yan
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaochen Lang
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yongzhen Yang
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Haotian Hao
- College of Artificial Intelligence, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
3
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Interactions of Nanoparticles with Macrophages and Feasibility of Drug Delivery for Asthma. Int J Mol Sci 2022; 23:ijms23031622. [PMID: 35163544 PMCID: PMC8835984 DOI: 10.3390/ijms23031622] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the interaction between nanoparticles and immune cells is essential for the evaluation of nanotoxicity and development of nanomedicines. However, to date, there is little data on the membrane microstructure and biochemical changes in nanoparticle-loaded immune cells. In this study, we observed the microstructure of nanoparticle-loaded macrophages and changes in lipid droplets using holotomography analysis. Quantitatively analyzing the refractive index distribution of nanoparticle-loaded macrophages, we identified the interactions between nanoparticles and macrophages. The results showed that, when nanoparticles were phagocytized by macrophages, the number of lipid droplets and cell volume increased. The volume and mass of the lipid droplets slightly increased, owing to the absorption of nanoparticles. Meanwhile, the number of lipid droplets increased more conspicuously than the other factors. Furthermore, alveolar macrophages are involved in the development and progression of asthma. Studies have shown that macrophages play an essential role in the maintenance of asthma-related inflammation and tissue damage, suggesting that macrophage cells may be applied to asthma target delivery strategies. Therefore, we investigated the target delivery efficiency of gold nanoparticle-loaded macrophages at the biodistribution level, using an ovalbumin-induced asthma mouse model. Normal and severe asthma models were selected to determine the difference in the level of inflammation in the lung. Consequently, macrophages had increased mobility in models of severe asthma, compared to those of normal asthma disease. In this regard, the detection of observable differences in nanoparticle-loaded macrophages may be of primary interest, as an essential endpoint analysis for investigating nanomedical applications and immunotheragnostic strategies.
Collapse
|
5
|
Wang X, Zhang Z, Liu Z, Ma X, Dai Q, Wang X, Ge B, He H, Huang F. Spectroscopic investigation on the binding interactions between graphene quantum dots and carbonic anhydrase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120369. [PMID: 34547684 DOI: 10.1016/j.saa.2021.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
As a new member of the nanomaterials family, ultrasmall graphene quantum dots (GQDs) have shown broad application prospects in the field of biomedicine, but the analysis of their biological effects at the molecular level is yet limited. Herein, carbonic anhydrase (CA) was selected as a model protein to assess the interactions between GQDs and biomacromolecules. A range of spectroscopic techniques were employed to systematically investigate the binding interactions between GQDs and CA and the catalytic function of CA in the presence of GQDs was evaluated. Experimental results showed that GQDs could quench the intrinsic fluorescence of CA and the concentration dependent quenching efficiency exhibited an obvious deviation from the linear plot, indicating a static binding mode. Further investigation suggested that van der Waal interactions and hydrogen bonding were the main driving forces. Additionally, circular dichroism measurement showed that the binding of GQDs induced slight conformational changes of CA. The catalytic capability assessment proved that these binding interactions resulted in the reduction of the biological functions of CA. This comprehensive study provided important insight into the interaction of GQDs with biomacromolecules, which would be crucial for the further applications of GQDs and other nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhixiong Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiqi Ma
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qi Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
6
|
Shahriar SMS, Nafiujjaman M, An JM, Revuri V, Nurunnabi M, Han DW, Lee YK. Graphene: A Promising Theranostic Agent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:149-176. [DOI: 10.1007/978-981-16-4923-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Synthesis of magnetically reusable Fe3O4 nanospheres-N, S co-doped graphene quantum dots enclosed CdSe its application as a photocatalyst. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Simsek S, Alas MO, Ozbek B, Genc R. Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. J Fluoresc 2019; 29:853-864. [PMID: 31214927 DOI: 10.1007/s10895-019-02390-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
In this original research, the synthesis of carbon nanodots (CDs) from two different solvent extracts of Nerium oleander by the thermal method was investigated under various physical conditions such as pH, reaction temperature, ionic strength, and surface passivation agent (polyethylene glycol, PEG) presence in the reaction media. The effects of extract types and physical conditions on CDs formation were characterized by UV-Visible spectrophotometry, fluorescence spectrophotometry, Fourier transform infrared spectroscopy and dynamic light scattering analysis. Fluorescent CDs were obtained from PEG included reaction media. Additionally, the enhanced fluorescence intensity correlated with ascending reaction temperature was reported. The hydrodynamic particle size of CDs in aqueous solution was determined between ~1 and 235 nm with negative surface potential in the range of -6 mV and -28 mV. Moreover, CDs synthesized from aqueous extract mostly resulted in smaller size than that of ethanol extract based ones. The impact of surface passivation with PEG on the fluorescence feature of CDs was verified. For the relevant extracts of Oleander, CDs synthesized from PEG included formulations at pH 5 and NaCl free reaction media found as better alternatives than CDs synthesized under other conditions taking account their effect on fluorescence feature, hydrodynamic size and etc. Graphical Abstract.
Collapse
Affiliation(s)
- Sinem Simsek
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey
| | - Melis Ozge Alas
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Yenisehir, 33343, Mersin, Turkey
| | - Belma Ozbek
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey.
| | - Rukan Genc
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Yenisehir, 33343, Mersin, Turkey.
| |
Collapse
|