1
|
Sharma M, Murali R, K K, P K, Chatterjee S. Layered double hydroxide based composite core-shell electrospun nanofibers for lead and fluoride filtration from contaminated streams. RSC Adv 2025; 15:13337-13352. [PMID: 40290747 PMCID: PMC12024706 DOI: 10.1039/d5ra01144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Coaxial electrospinning was used to synthesize polyacrylonitrile-polyethersulfone (PAN-PES) core-shell nanofibers with magnesium-aluminum layered double hydroxide (Mg-Al LDH) for filtration of lead and fluoride from contaminated streams. Fiber geometry was characterized at a 0.5 mL h-1 flow rate for the core polymer (PES/LDH) and 0.8 mL h-1 flow rate for the shell polymer (PAN), with a potential of 23 kV and a distance of 15-17 cm between the collector and the needle head. A homogeneous fiber shape was achieved using an optimal LDH concentration of 0.7%. The prepared nanofibers served as an ultrafiltration membrane with a permeability of 5 × 10-12 m s-1 Pa-1. The uptake capacity of the produced nanofibers for fluoride and lead was estimated to be 948 mg g-1 and 196 mg g-1, respectively at 298 K as per Langmuir's isotherm model. These fibers exhibited hydrophilic properties and possessed a significant level of porosity. XPS study revealed binding energies of 139.3 eV and 685.2 eV, indicating lead and fluoride uptake by the nanofibers. Ether, sulfone, hydroxyl and nitrile groups found in the nanofibers' shell and core most likely contributed to the lead and fluoride uptake. This facilitated the uptake of both ions on the surface of the nanofibers. In terms of the inhibition effect, fluoride had a stronger masking effect compared with lead in a multicomponent solution (consisting of lead and fluoride). Dynamic vacuum filtration was also investigated using the prepared nanofibers in artificial and real-life feed solutions.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Chemical Engineering, BITS-Pilani Pilani Rajasthan-333031 India +91-1596-51-5757 +91-1596-244183
| | - Rushabh Murali
- Department of Chemical Engineering, BITS-Pilani Pilani Rajasthan-333031 India +91-1596-51-5757 +91-1596-244183
| | - Karthik K
- Department of Chemistry, Anna University Chennai Tamil Nadu-600025 India
| | - Keerthi P
- Department of Chemistry, Anna University Chennai Tamil Nadu-600025 India
| | - Somak Chatterjee
- Department of Chemical Engineering, BITS-Pilani Pilani Rajasthan-333031 India +91-1596-51-5757 +91-1596-244183
| |
Collapse
|
2
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
3
|
Kassem AT, Ali MMS, Sami NM. Predictive modeling of pH on the transport of Co(II) Ions from aqueous solutions through supported ceramic polymer membrane. Sci Rep 2024; 14:14778. [PMID: 38926406 PMCID: PMC11208598 DOI: 10.1038/s41598-024-63854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Optimal pH is essential for efficient cobalt extraction from polymeric membrane systems, with D2EHPA used as an extractant for Co(II) at pH < 7, achieving 47% efficiency. The pH of piperazine as a stripping agent increases to a concentration of 0.48 M, and the extraction efficiency of Co(II) > 80%. Depending on the functional group of (C4H10N2), the optimal pH for separation was 9.8. The study revealed that pKa value was calculated to predict the ideal pH, and its value was 9.73, which is nearly to the pH, since the pH of the strip concentration and the properties of the membrane affect the extraction of cobalt at 30 °C. The partition ratio indicates the high distribution of the extract in supported ceramic polymer membrane (SCPM). The ceramic component provides mechanical strength and rigidity to the overall membrane structure, allowing it to withstand high pressures and temperatures during operation Study various factors such as the effect of pH on the ionization of the extract; effect of pH on band ionization; effect of pH on the temperature in the extract, effect of pH on the solute, effect of the band at different pH ranges and a comparison was made between the predictive model and experimental data that was proven through mathematical modeling using the MATLAB program.
Collapse
Affiliation(s)
- A T Kassem
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - M M S Ali
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - N M Sami
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| |
Collapse
|
4
|
Poon YK, Enche Ab Rahim SK, Ng QH, Hoo PY, Abdullah NY, Nasib A, Abdullah NS. Synthesis and Characterisation of Self-Cleaning TiO 2/PES Mixed Matrix Membranes in the Removal of Humic Acid. MEMBRANES 2023; 13:373. [PMID: 37103800 PMCID: PMC10145305 DOI: 10.3390/membranes13040373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Membrane application is widespread in water filtration to remove natural organic matter (NOM), especially humic acid. However, there is a significant concern in membrane filtration, which is fouling, which will cause a reduction in the membrane life span, a high energy requirement, and a loss in product quality. Therefore, the effect of a TiO2/PES mixed matrix membrane on different concentrations of TiO2 photocatalyst and different durations of UV irradiation was studied in removing humic acid to determine the anti-fouling and self-cleaning effects. The TiO2 photocatalyst and TiO2/PES mixed matrix membrane synthesised were characterised using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), contact angle, and porosity. The performances of TiO2/PES membranes of 0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.% were evaluated via a cross-flow filtration system regarding anti-fouling and self-cleaning effects. After that, all the membranes were irradiated under UV for either 2, 10, or 20 min. A TiO2/PES mixed matrix membrane of 3 wt.% was proved to have the best anti-fouling and self-cleaning effect with improved hydrophilicity. The optimum duration for UV irradiation of the TiO2/PES mixed matrix membrane was 20 min. Furthermore, the fouling behaviour of mixed matrix membranes was fitted to the intermediate blocking model. Adding TiO2 photocatalyst into the PES membrane enhanced the anti-fouling and self-cleaning properties.
Collapse
Affiliation(s)
- Yan Kee Poon
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research (CFMR), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research (CFMR), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research (CFMR), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Nur Yasmin Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Amira Nasib
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research (CFMR), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Norazharuddin Shah Abdullah
- Centre of Excellence for Frontier Materials Research (CFMR), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| |
Collapse
|
5
|
George J, Kumar VV. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Evaluation of antifouling/biofouling ability of a novel MIL101(Cr)/PES composite membrane for acetate wastewater treatment in MBR application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Oliveira CPMD, Moreira VR, Lebron YAR, Vasconcelos CKBD, Koch K, Viana MM, Drewes JE, Amaral MCS. Converting recycled membranes into photocatalytic membranes using greener TiO 2-GRAPHENE oxide nanomaterials. CHEMOSPHERE 2022; 306:135591. [PMID: 35798155 DOI: 10.1016/j.chemosphere.2022.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the widespread use of membrane separation processes for water treatment, operation costs and fouling still restrict their application. Costs can be overcome by recycled membranes whereas fouling can be mitigated by membrane modification. In this work, the performance of recycled reverse osmosis membranes modified by greener titanium dioxide (TiO2) and graphene oxide (GO) in different modification routes were investigated and compared. The use of recycled membranes as a support acted more than a strategy for costs reduction, but also as an alternative for solid waste reduction. Low adhesion of nanoparticulate materials to the membrane surfaces were verified in depositions by self-assembly, whereas filtration and modification with dopamine generated membranes with well adhered and homogeneous layers. Considering the stability, permeability, and rejection efficiency of dyes as model substrates, the membranes modified with the aid of dopamine-TiO2-GO were the most promising. The nanomaterials increased the membrane hydrophilicity and formed a hydrated layer that repels the organic contaminants and reduces fouling. Besides membrane rejection, adsorption (contribution: ∼10%) and photocatalysis (contribution: ∼20%) were additional mechanisms for pollutants removal by the modified membranes. The photocatalytic membrane modified with dopamine-TiO2-GO was furthermore evaluated for the removal of six different pharmaceutical active compounds (PhACs), noticing gains in terms of removal efficiency (up to 95.7%) and fouling mitigation for the modified membrane compared to the original membranes. The photocatalytic activity still contributed to a simultaneous degradation of PhACs avoiding the generation of a concentrated stream for further disposal.
Collapse
Affiliation(s)
- Caique Prado Machado de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | | | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Marcelo Machado Viana
- Department of Chemistry, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Behboudi A, Mohammadi T, Ulbricht M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ayyaru S, Ahn YH. Fabrication and application of novel high strength sulfonated PVDF ultrafiltration membrane for production of reclamation water. CHEMOSPHERE 2022; 305:135416. [PMID: 35738407 DOI: 10.1016/j.chemosphere.2022.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced treated water (ATW) produced in wastewater treatment facilities was assessed as an excellent alternative water resource that can be used as reclamation water, such as indirect and direct potable reuse. The development of cutting-edge technology for simple but best practices is essential for the reliable production of safe reclamation water from wastewater. This study prepared a novel high strength sulfonated polyvinylidene fluoride (HSPVDF) ultrafiltration membrane and investigated to produce ATW, and performances were compared to sulfonated PVDF (SPVDF) (which was prepared without thermal treatment) and bare PVDF. To compare the properties of HSPVDF to hydrocarbon polymer, the polyetherimide (PEI) and Sulfonated PEI (SPEI) membrane were prepared. HSPVDF showed excellent membrane morphology, porosity, MWCO, and hydrophilicity, resulting in higher pure water flux (712 ± 6 L m-2 h-1) antifouling properties (Rir 1.3% and FRR 98.6%) compared to PVDF. It is an interesting fact that the tensile strength of the HSPVDF (3.4 ± 0.2 MPa) tremendously increased (3 folders) when compere to PVDF (1.3 ± 0.1 MPa). The HSPVDF membrane showed good removal efficiency up to 96 ± 05% and 97 ± 09% rejection for bovine serum albumin (BSA) and humic acid (HA), respectively. The membrane application studies for wastewater treatment showed that the tertiary HSPVDF UF membrane filtration following the nutrient removal activated sludge (NRAS) process can produce reliable and economic performance (125 ± 2 L m-2 h-1, 0.25 ± 0.05 NTU, no pathogens), suggesting that it can be a best practice technique that can replace the complicated multi-staged tertiary processes to produce reclamation water.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
10
|
Surface smoothening and formation of nano-channels improved mono-selectivity and antifouling property in TiO2 incorporated cation exchange membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Liao P, You L, Zheng WJ, Zou W, Yan J, Yang H, Yang F. Self-cleaning expanded polytetrafluoroethylene-based hybrid membrane for water filtration. RSC Adv 2022; 12:13228-13234. [PMID: 35527732 PMCID: PMC9067432 DOI: 10.1039/d2ra01026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Membrane surface fouling is a key problem for water filtration. Compositing photocatalytic substances with a base membrane is a widely used strategy, but most of the membrane will be decomposed by photocatalysis. Herein, expanded polytetrafluoroethylene (ePTFE) with extremely stable chemical properties is grafted with polyacrylic acid (PAA) and then modified with titanium dioxide (TiO2) to realize a self-cleaning TiO2-PAA-ePTFE filtration membrane. It can recover its flux under UV irradiation after fouling. With 20 rounds of self-cleaning, the membrane microstructure still remains intact. Moreover, in addition to retaining bovine serum albumin, TiO2 particles on the membrane surface are capable of absorbing small organic pollutants and degrading them. Thus, this membrane is potentially used as an anti-fouling membrane for water filtration.
Collapse
Affiliation(s)
- Peng Liao
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Lan You
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wen Jiang Zheng
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wei Zou
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Jie Yan
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Hu Yang
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Fan Yang
- Organic Fluorine Material Key Laboratory of Sichuan Province, Zhonghao Chenguang Chemical Research Institute Zigong 643201 PR China
| |
Collapse
|
12
|
One-Step Fabrication of Novel Polyethersulfone-Based Composite Electrospun Nanofiber Membranes for Food Industry Wastewater Treatment. MEMBRANES 2022; 12:membranes12040413. [PMID: 35448383 PMCID: PMC9028427 DOI: 10.3390/membranes12040413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023]
Abstract
Using an environmentally friendly approach for eliminating methylene blue from an aqueous solution, the authors developed a unique electrospun nanofiber membrane made of a combination of polyethersulfone and hydroxypropyl cellulose (PES/HPC). SEM results confirmed the formation of a uniformly sized nanofiber membrane with an ultrathin diameter of 168.5 nm (for PES/HPC) and 261.5 nm (for pristine PES), which can be correlated by observing the absorption peaks in FTIR spectra and their amorphous/crystalline phases in the XRD pattern. Additionally, TGA analysis indicated that the addition of HPC plays a role in modulating their thermal stability. Moreover, the blended nanofiber membrane exhibited better mechanical strength and good hydrophilicity (measured by the contact angle). The highest adsorption capacity was achieved at a neutral pH under room temperature (259.74 mg/g), and the pseudo-second-order model was found to be accurate. In accordance with the Langmuir fitted model and MB adsorption data, it was revealed that the adsorption process occurred in a monolayer form on the membrane surface. The adsorption capacity of the MB was affected by the presence of various concentrations of NaCl (0.1–0.5 M). The satisfactory reusability of the PES/HPC nanofiber membrane was revealed for up to five cycles. According to the mechanism given for the adsorption process, the electrostatic attraction was shown to be the most dominant in increasing the adsorption capacity. Based on these findings, it can be concluded that this unique membrane may be used for wastewater treatment operations with high efficiency and performance.
Collapse
|
13
|
Xu Z, Ye X, Hu P, Yin M, Lv B, Zhang G, Meng Q, Gao C. Azido-group functionalized graphene oxide/polysulfone mixed matrix ultrafiltration membrane with enhanced interfacial compatibility for efficient water and wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
15
|
Gao CM, Chen JC, Liu SH, Xing YQ, Ji SF, Chen HY, Chen JJ, Zou P, Cai JN, Fang H. Development of hydrophilic PES membranes using F127 and HKUST-1 based on the RTIPS method: Mitigate the permeability-selectivity trade-off. ENVIRONMENTAL RESEARCH 2021; 196:110964. [PMID: 33675799 DOI: 10.1016/j.envres.2021.110964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, to mitigate the permeability-selectivity trade-off effect, Pluronic F127 (F127) and HKUST-1 were employed to construct high-performance membranes based on the reverse thermally induced phase separation (RTIPS) method. F127, as a hydrophilic modifier, was applied to increase permeability and resist polyethersulfone (PES) membrane fouling, while the collapse of HKSUT-1 caused by its instability in pure water improved the permeability and selectivity of the membrane. Characterizations demonstrated the successful synthesis of HKUST-1, together with the successful introduction of HKSUT-1 and F127 in PES membranes. It was observed that the membrane prepared by the RTIPS process possessed a uniformly porous surface and sponge-like cross-section with excellent mechanical properties, higher permeability, and selectivity compared to the dense skin and finger-like cross-section of the membrane prepared by the nonsolvent induced phase separation (NIPS) method. Moreover, the permeation and bovine serum albumin (BSA) rejection rate of the optimal membrane reached 2378 L/m2 h and 89.3%, respectively, which were far higher than those of the pure membrane. Hydrophilic F127 and many microvoids formed by the collapse of HKUST-1, played an important role in excellent antifouling properties, high permeability, and selectivity by pure water flux (PWF), flux recovery rate (FRR), BSA flux, and COD removal rate tests. Overall, the membrane with F127 and HKSUT-1 prepared via the RTIPS method not only obtained excellent antifouling properties but also mitigated the permeability-selectivity trade-off.
Collapse
Affiliation(s)
- Chun-Mei Gao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin-Chao Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Sheng-Hui Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yun-Qing Xing
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Shi-Feng Ji
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong-Yu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia-Jian Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Zou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiao-Nan Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Han Fang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
16
|
Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Rafieian F, Mousavi M, Dufresne A, Yu Q. Polyethersulfone membrane embedded with amine functionalized microcrystalline cellulose. Int J Biol Macromol 2020; 164:4444-4454. [PMID: 32896564 DOI: 10.1016/j.ijbiomac.2020.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
In this investigation, microcrystalline cellulose (MCC) was functionalized with metformin HCl using (3-chloropropyl)triethixysilane (CPTES) as a coupling agent. Polyethersulfone (PES) membranes were incorporated with different concentrations of modified MCC (MMCC) to enhance its affinity for heavy metals during filtration of aqueous solutions. The composite membranes were characterized via fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, porosity and contact angle measurements and mechanical analysis. The presence of MMCC in the host matrix was confirmed by FTIR. Although composites decomposed at lower temperatures, their thermal stability was sufficient to meet their performance requirements. DSC showed enhanced glass transition temperature (Tg) due to the interfacial interactions between membrane constituents which restrict the mobility of polymer chains. Microscopic imaging revealed higher surface roughness of composites compared to neat PES. Inclusion of MMCC increased the porosity and hydrophilicity of the membrane which consequently, higher permeability can be achieved.
Collapse
Affiliation(s)
- Fatemeh Rafieian
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Mohammad Mousavi
- Department of Food Science and Technology, Agricultural College, University of Tehran, Karaj, Iran
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Qingliang Yu
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
18
|
Haragirimana A, Li N, Ingabire PB, Hu Z, Chen S. Multi-component organic/inorganic blend proton exchange membranes based on sulfonated poly(arylene ether sulfone)s for fuel cells. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Hliavitskaya T, Plisko T, Pratsenko S, Bildyukevich A, Lipnizki F, Rodrigues G, Sjölin M. Development of antifouling ultrafiltration PES membranes for concentration of hemicellulose. J Appl Polym Sci 2020. [DOI: 10.1002/app.50316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsiana Hliavitskaya
- Institute of Physical Organic Chemistry National Academy of Sciences of Belarus Minsk Belarus
| | - Tatiana Plisko
- Institute of Physical Organic Chemistry National Academy of Sciences of Belarus Minsk Belarus
| | - Svetlana Pratsenko
- Institute of Physical Organic Chemistry National Academy of Sciences of Belarus Minsk Belarus
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry National Academy of Sciences of Belarus Minsk Belarus
| | - Frank Lipnizki
- Department of Chemical Engineering Lund University Lund Sweden
| | - Goncalo Rodrigues
- Department of Chemical Engineering Lund University Lund Sweden
- Department of Bioengineering Instituto Superior Técnico Portugal
| | - Mikael Sjölin
- Department of Chemical Engineering Lund University Lund Sweden
| |
Collapse
|
20
|
Nanocomposite membrane integrated phage enrichment process for the enhancement of high rate phage infection and productivity. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Ayyaru S, Ahn YH. Fabrication of a Novel Nanocomposite Ultrafiltration Membrane with Improved Antifouling Properties Using Functionalized HfO2 and Polyvinylidene Fluoride for Organic Foulant Mitigation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
22
|
Samree K, Srithai PU, Kotchaplai P, Thuptimdang P, Painmanakul P, Hunsom M, Sairiam S. Enhancing the Antibacterial Properties of PVDF Membrane by Hydrophilic Surface Modification Using Titanium Dioxide and Silver Nanoparticles. MEMBRANES 2020; 10:membranes10100289. [PMID: 33076583 PMCID: PMC7602841 DOI: 10.3390/membranes10100289] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
This work investigates polyvinylidene fluoride (PVDF) membrane modification to enhance its hydrophilicity and antibacterial properties. PVDF membranes were coated with nanoparticles of titanium dioxide (TiO2-NP) and silver (AgNP) at different concentrations and coating times and characterized for their porosity, morphology, chemical functional groups and composition changes. The results showed the successfully modified PVDF membranes containing TiO2-NP and AgNP on their surfaces. When the coating time was increased from 8 to 24 h, the compositions of Ti and Ag of the modified membranes were increased from 1.39 ± 0.13 to 4.29 ± 0.16 and from 1.03 ± 0.07 to 3.62 ± 0.08, respectively. The water contact angle of the membranes was decreased with increasing the coating time and TiO2-NP/AgNP ratio. The surface roughness and permeate fluxes of coated membranes were increased due to increased hydrophilicity. Antimicrobial and antifouling properties were investigated by the reduction of Escherichia coli cells and the inhibition of biofilm formation on the membrane surface, respectively. Compared with that of the original PVDF membrane, the modified membranes exhibited antibacterial efficiency up to 94% against E. coli cells and inhibition up to 65% of the biofilm mass reduction. The findings showed hydrophilic improvement and an antimicrobial property for possible wastewater treatment without facing the eminent problem of biofouling.
Collapse
Affiliation(s)
- Kajeephan Samree
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Pen-umpai Srithai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Panaya Kotchaplai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisut Painmanakul
- Department of Environmental Engineering, Faculty of Engineer, Chulalongkorn University, Bangkok 10300, Thailand;
- Research Program on Development of Technology and Management Guideline for Green Community, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
- Research Unit on Technology for Oil Spill and Contamination Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mali Hunsom
- Academy of Science, The Royal Society of Thailand, Office of the Royal Society, Dusit, Bangkok 10300, Thailand;
| | - Sermpong Sairiam
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
- Correspondence:
| |
Collapse
|
23
|
Severcan SS, Uzal N, Kahraman K. Clarification of pomegranate juice using PSF microfiltration membranes fabricated with nano TiO 2and Al 2O 3. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Solmaz Sebnem Severcan
- Department of Material Science and Mechanical Engineering Abdullah Gül University Kayseri Turkey
| | - Nigmet Uzal
- Department of Civil Engineering Abdullah Gül University Kayseri Turkey
| | - Kevser Kahraman
- Department of Material Science and Nanotechnology Engineering Abdullah Gül University Kayseri Turkey
| |
Collapse
|
24
|
Chang CC, Beltsios KG, Lin JD, Cheng LP. Nano-titania/polyethersulfone composite ultrafiltration membranes with optimized antifouling capacity. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Hosseini SM, Karami F, Farahani SK, Bandehali S, Shen J, Bagheripour E, Seidypoor A. Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Ayyaru S, Dinh TTL, Ahn YH. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. CHEMOSPHERE 2020; 241:125068. [PMID: 31629244 DOI: 10.1016/j.chemosphere.2019.125068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 05/26/2023]
Abstract
This paper reports a novel nanocomposite additive for a polyvinylidene fluoride (PVDF) membrane with high hydrophilicity through the association of graphene oxide (GO) and ZnO. The influence of the hydrophilicity of GO-ZnO on the PVDF membrane was examined on different GO-ZnO loadings. The porosity and wettability (or hydrophilicity) of the membrane were improved significantly by blending GO-ZnO nanocomposite. In addition, the water flux of the GO-ZnO/PVDF membrane was 48% higher than that of bare PVDF, and the anti-fouling properties of this modified membrane were also improved. The irreversible fouling ratio (Rir) of bovine serum albumin (BSA) was reduced substantially with increasing the loading of GO-ZnO nanocomposite. The lowest irreversible fouling ratio (7.21%) was obtained for the membrane containing 0.2 wt % GO-ZnO of the nanocomposite (M6). GO-ZnO modification PVDF membranes were assumed to reduce the affinity between membrane and BSA foulant, which improved the anti-fouling properties PVDF membrane. In the activated sludge flux test, the membrane containing GO-ZnO in the polymer matrix had a higher flux than that of the bare PVDF membrane. The effluent quality after the composite membrane (0.6 NTU) was stable, indicating that the composite membrane can be used for practical applications Overall, the properties of the PVDF membrane were improved after modification due to hydrogen bonding or the hydrophilicity of the GO-ZnO nanocomposite.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ta Tuan Linh Dinh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
27
|
Khodami S, Mehdipour-Ataei S, Babanzadeh S. Preparation, characterization, and performance evaluation of sepiolite-based nanocomposite membrane for desalination. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Manoharan RK, Ayyaru S, Ahn YH. Auto-cleaning functionalization of the polyvinylidene fluoride membrane by the biocidal oxine/TiO2 nanocomposite for anti-biofouling properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj05300j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The commercial polyvinylidene fluoride (PVDF) polymer was modified with TiO2 nanoparticle-doped oxine to develop an auto-cleaning functionalized hybrid membrane with a long lasting antibiofilm effect.
Collapse
Affiliation(s)
| | - Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan
- Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan
- Republic of Korea
| |
Collapse
|
29
|
Monsef K, Homayoonfal M, Davar F. Engineering arrangement of nanoparticles within nanocomposite membranes matrix: a suggested way to enhance water flux. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1695264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kamalodin Monsef
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|