1
|
Ren H, Xiang Y, Zhang A, Zhao H, Tian H, Guo X, Zheng Y, Zhang B. Optimization and Mechanism of Ca 2+ Biosorption by Virgibacillus pantothenticus Isolated from Gelatine Wastewater. Pol J Microbiol 2025; 74:19-32. [PMID: 40146791 PMCID: PMC11949390 DOI: 10.33073/pjm-2025-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/24/2024] [Indexed: 03/29/2025] Open
Abstract
Gelatine-processing wastewater contains much residual sludge due to its high calcium ion concentration and chemical oxygen demand. In this study, N3-4, a microbial strain with excellent calcium tolerance capacity, was screened and identified as Virgibacillus pantothenticus using morphological observation, physiological and biochemical testing, and 16S rRNA sequence analysis. Its growth characteristics were investigated, and the maximum adsorption of calcium reached 572.43 μg/g under the optimal conditions (contact time, 72.68 min; biomass dosage, 1.3 g/l; initial calcium concentration, 142.01 mg/l). Conditions were optimized using response surface methodology and structural characterization. The structure of the bacterial pellets was altered from flat to rough, accompanied by bulges and sediments after Ca2+ treatment, according to structural characterization. Energy-dispersive X-ray spectroscopy of the bacterial precipitates under calcium(II) treatment revealed the immobilization of Ca2+ species on the bacterial cell surface. The results indicate that -OH, -NH2, C≡C, C=O, -CH2, -C-O-, and -C-N groups play a significant role in calcium dispersion on the surface of V. pantothenticus.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Yumeng Xiang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Aili Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, United States
| | - Bingyun Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| |
Collapse
|
2
|
Mousa AM, Abdel-Galil EA, Zhran M, Moussa MG. Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:47. [PMID: 39786498 DOI: 10.1007/s10653-024-02342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated. Six fungal isolates were screened, and the most promising isolate, identified as F. solani, was selected for further research. The biomass was exposed to different gamma irradiation doses (0, 1, 3, and 5 kGy), and its biosorption efficiency was assessed. The highest biosorption efficiencies were observed with the biomass exposed to 5 kGy (FS-5), achieving 37% for Co(II) and 90% for Cd(II) removal within 25 min. The surface area of the biosorbent increased from 13.12 m2 g-1 for unexposed biomass (FS-0) to 34.87 m2 g-1 for FS-5, enhancing the biosorption capacity. The adsorption kinetics followed a pseudo second order model with high correlation coefficients (R2 > 0.993), indicating chemisorption as the rate-limiting step. Isotherm studies showed that the Langmuir model provided a better fit to the experimental data, with maximum adsorption capacities of 4.44 mg g-1 for Co(II) and 21.00 mg g-1. This study provides valuable insights into the effective removal of Cd and Co from polluted sites, underscoring the potential of developing eco-friendly and cost-effective bioremediation approaches.
Collapse
Affiliation(s)
- Abeer M Mousa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - Ezzat A Abdel-Galil
- Environmental Radioactive Pollution Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mostafa Zhran
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed G Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
- Sustainable Natural Resources Management, International Center for Biosaline Agriculture, ICBA, Dubai, 14660, United Arab Emirates.
| |
Collapse
|
3
|
Sánchez C. Fusarium as a promising fungal genus with potential application in bioremediation for pollutants mitigation: A review. Biotechnol Adv 2024; 77:108476. [PMID: 39536920 DOI: 10.1016/j.biotechadv.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Fusarium is genetically diverse and widely distributed geographically. It is one of the genera with more endophytes (which cause no damage to the host plants). This review highlights the capability of Fusarium species to degrade environmental pollutants and describes the biodegradation pathways of some of the emerging environmental contaminants. Some Fusarium species use metabolic strategies enabling them to efficiently mineralize high concentrations of toxic environmental pollutants. These fungi can degrade hydrocarbons, pesticides, herbicides, dyes, pharmaceutical compounds, explosives, plastics, and plastic additives, among other pollutants, and possess high metal biosorption capabilities. According to data from consulted reports, Fusarium strains showed a percentage of biodegradation of a variety of contaminants ranging between 30 % and 100 % for different tested concentrations (from 1 mg to 10 g/L) in a time range between 10 h and 90 d. Enzymes such as esterase, cutinase, laccase, lignin peroxidase, manganese peroxidase, dehydrogenase, lipase, dioxygenase, and phosphoesterase were detected during the pollutant biodegradation process. Fusarium oxysporum, Fusarium solani, and Fusarium culmorum are the most studied species of this genus. Owing to their metabolic versatility, these fungal species and their enzymes represent promising tools for bioremediation applications to mitigate the adverse effects of environmental pollution.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala 90120, Mexico.
| |
Collapse
|
4
|
Moreira D, Alves GS, Rodrigues JMM, Estevam BR, Sales DH, Américo-Pinheiro JHP, Vasconcelos AFD, Boina RF. Exploring the biosorption of nickel and lead by Fusarium sp. biomass: kinetic, isotherm, and thermodynamic assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59592-59609. [PMID: 39361204 DOI: 10.1007/s11356-024-35192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.
Collapse
Affiliation(s)
- Daniele Moreira
- Department of Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, 15385-000, Brazil.
| | - Gabriela Souza Alves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - João Marcos Madeira Rodrigues
- Department of Biotechnology, Faculty of Sciences and Letters, São Paulo State University (UNESP), Assis, SP, 19806-900, Brazil
| | - Bianca Ramos Estevam
- Department of Process and Product Development, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil
| | - Douglas Henrique Sales
- Department of Physics, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forestry, Soil and Environmental Science, Faculty of Agricultural Sciences, School of Technology and Sciences UNESP, Botucatu, SP, 18610-034, Brazil
| | - Ana Flora Dalberto Vasconcelos
- Department of Chemistry and Biochemistry, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Rosane Freire Boina
- Department of Planning, Urbanism and Environment, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
5
|
Hoang Phan Quang H, Tuan Phan K, Dinh Lam Ta P, Thi Dinh N, Alomar TS, AlMasoud N, Huang CW, Chauhan A, Nguyen VH. Nitrate removal from aqueous solution using watermelon rind derived biochar-supported ZrO2 nanomaterial: Synthesis, characterization, and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes (Basel) 2021. [DOI: 10.3390/pr9101696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persistent toxic substances including persistent organic pollutants and heavy metals have been released in high quantities in surface waters by industrial activities. Their presence in environmental compartments is causing harmful effects both on the environment and human health. It was shown that their removal from wastewaters using conventional methods and adsorbents is not always a sustainable process. In this circumstance, the use of microorganisms for pollutants uptake can be seen as being an environmentally-friendly and cost-effective strategy for the treatment of industrial effluents. However, in spite of their confirmed potential in the remediation of persistent pollutants, microorganisms are not yet applied at industrial scale. Thus, the current paper aims to synthesize and analyze the available data from literature to support the upscaling of microbial-based biosorption and bioaccumulation processes. The industrial sources of persistent pollutants, the microbial mechanisms for pollutant uptake and the significant results revealed so far in the scientific literature are identified and covered in this review. Moreover, the influence of different parameters affecting the performance of the discussed systems and also very important in designing of treatment processes are highly considered. The analysis performed in the paper offers an important perspective in making decisions for scaling-up and efficient operation, from the life cycle assessment point of view of wastewater microbial bioremediation. This is significant since the sustainability of the microbial-based remediation processes through standardized methodologies such as life cycle analysis (LCA), hasn’t been analyzed yet in the scientific literature.
Collapse
|
7
|
Meng L, Li Z, Liu L, Chen X, Li W, Zhang X, Dong M. Lead removal from water by a newly isolated Geotrichum candidum LG-8 from Tibet kefir milk and its mechanism. CHEMOSPHERE 2020; 259:127507. [PMID: 32650171 DOI: 10.1016/j.chemosphere.2020.127507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/01/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, a yeast-like fungal strain (LG-8), newly isolated from spontaneous Tibet kefir in China, was identified as Geotrichum candidum on the basis of its morphological characteristics and ITS5.8S gene sequence. Interestingly, the strain was able to remove more than 99% of Pb2+ ions in water at low concentrations and a maximum of 325.68 mg lead/g of dry biomass. The results of selective passivation experiments suggested that phosphate, amide and carboxyl groups on the cell wall contributed to lead removal. Scanning electron microscopy (SEM) photomicrographs revealed that large amounts of micro/nanoparticles formed on the cell wall, and energy dispersive X-ray spectroscopy (EDX) results further indicated the presence of lead along with phosphorus and chlorine in the particles. Furthermore, the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses revealed that the particles were composed of pyromorphite [Pb5(PO4)3Cl], a highly insoluble lead mineral. Importantly, this is the first time that the biomineralization of lead into pyromorphite has been observed as the major mechanism for lead removal by G. candidum LG-8, providing a new strategy to scavenge heavy metals from aquatic environment in an eco-friendly manner.
Collapse
Affiliation(s)
- Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Zhiyu Li
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Lizhi Liu
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, Jiangsu, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Del Olmo G, Ahmad A, Jensen H, Karunakaran E, Rosales E, Calero Preciado C, Gaskin P, Douterelo I. Influence of phosphate dosing on biofilms development on lead in chlorinated drinking water bioreactors. NPJ Biofilms Microbiomes 2020; 6:43. [PMID: 33097725 PMCID: PMC7585443 DOI: 10.1038/s41522-020-00152-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Phosphate dosing is used by water utilities to prevent plumbosolvency in water supply networks. However, there is a lack of knowledge regarding biofilm formation on lead and plastic materials when phosphate concentrations are modified in drinking water systems. In this study, biofilms were grown over lead coupons and PVC tubes in bioreactors supplied with local drinking water treated to provide different phosphate doses (below 1, 1 and 2 mg/L) over a period of 28 days. A range of commercial iron pellets (GEH104 and WARP) were tested aiming to maintain phosphate levels below the average 1 mg/L found in drinking water. Changes in biofilm community structure in response to three different phosphate treatments were characterised by Illumina sequencing of the 16S rRNA gene for bacteria and the ITS2 gene for fungi. Scanning electron microscopy was used to visualise physical differences in biofilm development in two types of materials, lead and PVC. The experimental results from the kinetics of phosphate absorption showed that the GEH104 pellets were the best option to, in the long term, reduce phosphate levels while preventing undesirable turbidity increases in drinking water. Phosphate-enrichment promoted a reduction of bacterial diversity but increased that of fungi in biofilms. Overall, higher phosphate levels selected for microorganisms with enhanced capabilities related to phosphorus metabolism and heavy metal resistance. This research brings new insights regarding the influence of different phosphate concentrations on mixed-species biofilms formation and drinking water quality, which are relevant to inform best management practices in drinking water treatment.
Collapse
Affiliation(s)
- Gonzalo Del Olmo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, The Netherlands
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44, Stockholm, Sweden
- Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB, Wageningen, The Netherlands
| | - Henriette Jensen
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Esther Rosales
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Isabel Douterelo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
The Role of Fungi and Genes for the Removal of Environmental Contaminants from Water/Wastewater Treatment Plants. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Zhan X, Wang L, Wang L, Xu T, Li Y, Song X, Wang X. The regionally dominant biomass (leaves of F.virens) selectively adsorb lead from municipal solid waste incineration fly ash pickling wastewater. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|