1
|
Zhang Z, Hu H, Yang J, He Z, Zhu G, Wen C. The Application of Porous Carbon Derived from Furfural Residue as the Electrode Material in Supercapacitors. Polymers (Basel) 2024; 16:3421. [PMID: 39684165 DOI: 10.3390/polym16233421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Resource use is crucial for the sustainable growth of energy and green low-carbon applications since the improper handling of biomass waste would have a detrimental effect on the environment. This paper used nano-ZnO and ammonium persulfate ((NH4)2S2O8, APS) as a template agent and heteroatom dopant, respectively. Using a one-step carbonization process in an inert atmosphere, the biomass waste furfural residue (FR) was converted into porous carbon (PC), which was applied to the supercapacitor electrode. The impact of varying APS ratios and carbonization temperatures on the physicochemical properties and electrochemical properties of PC was studied. O, S, and N atoms were evenly distributed in the carbon skeleton, producing abundant heteroatomic functional groups. The sample with the largest specific surface area (SSA, 855.62 m2 g-1) was made at 900 °C without the addition of APS. With the increase in adding the ratio of APS, the SSA and pore volume of the sample were reduced, owing to the combination of APS and ZnO to form ZnS during the carbonization process, which inhibited the pore generation and activation effect of ZnO and damaged the pore structure of PC. At 0.5 A g-1 current density, PC900-1 (FR: ZnO: APS ratio 1:1:1, prepared at 900 °C) exhibited the maximum specific capacitance of 153.03 F g-1, whereas it had limited capacitance retention at high current density. PC900-0.1 displayed high specific capacitance (141.32 F g-1 at 0.5 A g-1), capacitance retention (80.7%), low equivalent series resistance (0.306 Ω), and charge transfer resistance (0.145 Ω) and showed good rate and energy characteristics depending on the synergistic effect of the double layer capacitance and pseudo-capacitance. In conclusion, the prepared FR-derived PC can meet the application of a supercapacitor energy storage field and realize the resource and functional utilization of biomass, which has a good application prospect.
Collapse
Affiliation(s)
- Zhiyin Zhang
- PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China
| | - Huimin Hu
- PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China
| | - Jie Yang
- PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China
| | - Zhengguang He
- PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China
| | - Guangyue Zhu
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chang Wen
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Karoń K, Zabłocka-Godlewska E, Krukiewicz K. Recent advances in the design of bacteria-based supercapacitors: Current limitations and future opportunities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Lee KS, Kim JY, Park J, Ko JM, Mugobera S. Two-Dimensional Heterostructure of PPy/CNT- E. coli for High-Performance Supercapacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175804. [PMID: 36079186 PMCID: PMC9457316 DOI: 10.3390/ma15175804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/10/2023]
Abstract
The nano-biocomposite electrodes composed of carbon nanotube (CNT), polypyrrole (PPy), and E. coli-bacteria were investigated for electrochemical supercapacitors. For this purpose, PPy/CNT-E. coli was successfully synthesized through oxidative polymerization. The PPy/CNT-E. coli electrode exhibited a high specific capacitance of 173 F∙g-1 at the current density of 0.2 A∙g-1, which is much higher than that (37 F∙g-1) of CNT. Furthermore, it displayed sufficient stability after 1000 charge/discharge cycles. The CNT, PPy/CNT, and PPy/CNT-E. coli composites were characterized by x-ray diffraction, scanning electron microscopy, and surface analyzer (Brunauer-Emmett-Teller, BET). In particular, the pyrrole monomers were easily adsorbed and polymerized on the surface of CNT materials, as well as E. coli bacteria enhanced the surface area and porous structure of the PPy/CNT-E. coli composite electrode resulting in high performance of devices.
Collapse
Affiliation(s)
- Kwang Se Lee
- Department of Advanced Materials & Chemical Engineering, Kyungnam College of Information & Technology, 45 Jurye-ro, Busan 47011, Sasang-gu, Korea
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia
| | - Jongwook Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Gyeonggi, Korea
| | - Jang Myoun Ko
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Daejeon 34158, Yuseong-gu, Korea
| | - Sharon Mugobera
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Daejeon 34158, Yuseong-gu, Korea
| |
Collapse
|
4
|
Choi S, Jung J, Puthusseri D, Mugobera S, Myoun Ko J, Se Lee K. One-pot fabrication of N-doped hierarchical porous carbon derived from sponge for lithium-ion battery. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
|
6
|
Lee KS, Phiri I, Park CW, Kim S, Ko JM. Nature inspired approach to mimic design for increased specific capacitance as supercapacitor electrodes. J Colloid Interface Sci 2021; 592:42-50. [PMID: 33639537 DOI: 10.1016/j.jcis.2021.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
In this study, the experiment was conducted assuming that the citrus fruits were contaminated with bacteria. Herein, orange peels (OP) and lemon peels (LP) can be used as a carbon source and have the advantage of using discarded materials and heteroatoms. Also, the nitrogen heteroatom is introduced by naturally doping the materials with bacteria (Escherichia Coli, E. coli). The as-prepared bacteria doped activated carbon showed an increase in nitrogen content and surface properties which led to an improvement in electrochemical properties. The specific capacitance of bacteria doped OP and LP was 92.4 and 139 Fg-1 compared to the bare samples with a specific capacitance of 60.9 and 49.6 Fg-1 at a current density of 0.2Ag-1 and capacity retention of 129% after 10,000 cycles for the bacteria-doped samples. This process which is simple, cheap, and environmentally friendly can be applied to discarded fruit peels for the fabrication of supercapacitor materials.
Collapse
Affiliation(s)
- Kwang Se Lee
- Department of Advanced Materials & Chemical Engineering, Kyungnam College of Information & Technology, 45 Jurye-ro, Sasang-gu, Busan, South Korea.
| | - Isheunesu Phiri
- Department of Applied Chemistry & Biotechnology, Hanbat National University, San 16-1 Dukmyung-Dong, Yuseong-Gu, Daejeon 305-719, Republic of Korea
| | - Chan Woo Park
- Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea
| | - Saeheon Kim
- Department of Advanced Materials & Chemical Engineering, Kyungnam College of Information & Technology, 45 Jurye-ro, Sasang-gu, Busan, South Korea.
| | - Jang Myoun Ko
- Department of Applied Chemistry & Biotechnology, Hanbat National University, San 16-1 Dukmyung-Dong, Yuseong-Gu, Daejeon 305-719, Republic of Korea.
| |
Collapse
|
7
|
Lee KS, Phiri I, Park JH, Ko JM, Kim SH. Novel structure of bacteria doped ZnO particles: Facile and green synthesis route to prepare hybrid material for supercapacitor electrodes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bhagwan J, Hussain SK, Vamsi Krishna B, Yu JS. Multi-wall carbon nanotubes decorated MnCo2O4.5 hexagonal nanoplates with enhanced electrochemical behavior for high-performance electrochemical capacitors. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Lee KS, Park CW, Phiri I, Ko JM. New design for Polyaniline@Multiwalled carbon nanotubes composites with bacteria doping for supercapacitor electrodes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
He X, Chen Q, Mao X, Liu W, Zhou Y, Yang W, Yang Y, Xu J. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites. RSC Adv 2019; 9:30809-30814. [PMID: 35529378 PMCID: PMC9072198 DOI: 10.1039/c9ra05858c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
A novel electrode material incorporating renewable biomass-derived juglone biomolecules with commercial activated carbon (AC) granules has been through simple ultrasonic dispersion and dissolution–recrystallization and was found to exhibit good electrochemical performance. The juglone biomolecules are prepared by an ultrasound-assisted extraction method from abandoned walnut peel, which decreases pollution and increases economic efficiency. Through the dissolution–recrystallization process with AC, a hierarchical structure with nanosized juglone particles was obtained, and the AC particles worked as scaffolding to strengthen the slight biomolecules, thus expanding the active sites and effectively reducing the dissolution of the active materials. The pseudocapacitance fading mechanism was investigated by ex situ FTIR measurement and the porous structure ensures that the composite electrode has an enhanced specific capacitance of 248 F g−1 compared to 172.8 and 62.5 F g−1 for the respective AC and juglone samples. Besides, the excellent cyclic stability (retained 75% after 3000 charge–discharge cycles) was demonstrated. The highest area-specific capacitance of the composites was 1300 mF cm−2. An asymmetric supercapacitor based on this composite electrode was assembled with an AC electrode as the counter electrode and exhibited good cyclic performance at a voltage of 1.2 V (retained 77% after 3000 charge–discharge cycles), which provides a high energy density of 12 W h kg−1 at a power density of 0.18 kW kg−1 and a high power density of 2 kW kg−1 at an energy density of 9 W h kg−1. This work explores the application of biomolecule-based composites in energy storage devices and provides a potential strategy for constructing environmentally friendly electrodes. A strategy for transforming abandoned walnut peel to excellent pseudocapacitance material. The activated carbon reshapes and anchors the juglone, which combined the EDLC and pseudocapacitance to achieve high electrochemical performance.![]()
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Qian Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Xiling Mao
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Weichen Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Yujiu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Wenyao Yang
- Engineering Research Center of Electronic Information Technology and Application
- School of Electrical and Electronic Engineering
- Chongqing University of Arts and Sciences
- Chongqing 402160
- P. R. China
| | - Yajie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| | - Jianhua Xu
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- School of Optoelectronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu 610054
- P. R. China
| |
Collapse
|