1
|
Huang J, Wang X, Huang T, Yang Y, Tu J, Zou J, Yang H, Yang R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydr Polym 2024; 333:121985. [PMID: 38494236 DOI: 10.1016/j.carbpol.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Sodium Sulfobutylether-β-cyclodextrin (SBE-β-CD) is a derivative of β-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-β-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-β-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-β-CD at different concentrations. These features have contributed to the expanding applications. SBE-β-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-β-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-β-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-β-CD are discussed.
Collapse
Affiliation(s)
- Jiaqi Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Ting Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Yang Yang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| | - Rui Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| |
Collapse
|
2
|
Musilová L, Mráček A, Azevedo EFG, Valente AJM, Cabral AMTDPV, Ribeiro ACF, Esteso MA. Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. Int J Mol Sci 2023; 24:ijms24032889. [PMID: 36769218 PMCID: PMC9917444 DOI: 10.3390/ijms24032889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Knowledge of mass transport parameters, diffusion, and viscosity of hyaluronic acid (HA) in the presence of cyclodextrins is of considerable importance for areas such as food packaging and drug delivery, among others. Despite a number of studies investigating the functionalization of HA or the corresponding sodium salt by cyclodextrins, only a few studies have reported the effect of cyclodextrins on the mass transport of HA in the presence of these oligosaccharides. Here, we report the tracer binary and ternary interdiffusion coefficients of sodium hyaluronate (NaHy) in water and aqueous β-cyclodextrin solutions. The diffusion behavior of sodium hyaluronate was dependent on the reduced viscosity of NaHy, which, in turn, presented a concave dependence on concentration, with a minimum at approximately 2.5 g dm-3. The significant decrease in the limiting diffusion coefficient of NaHy (at most 45%) at NaHy concentrations below 1 g dm-3 in the presence of β-cyclodextrin, taking water as the reference, allowed us to conclude that NaHy strongly interacted with the cyclodextrin.
Collapse
Affiliation(s)
- Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Thomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Thomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Thomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Thomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Eduarda F. G. Azevedo
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J. M. Valente
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | - Ana M. T. D. P. V. Cabral
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal
| | - Ana C. F. Ribeiro
- Department of Chemistry, Centro de Química, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Miguel A. Esteso
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares (Madrid), Spain
- Faculty of Health Sciences, Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain
| |
Collapse
|
3
|
Wang R, Wang S, Qin C, Nie Q, Luo Y, Qin QP, Wang R, Liu B, Luo D. An Electrochemical Sensor Based on Electropolymerization of β-Cyclodextrin on Glassy Carbon Electrode for the Determination of Fenitrothion. SENSORS (BASEL, SWITZERLAND) 2022; 23:435. [PMID: 36617033 PMCID: PMC9824020 DOI: 10.3390/s23010435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
An electrochemical sensor enabled by electropolymerization (EP) of β-cyclodextrin on glassy carbon electrode (β-CDP/GCE) is built for the determination of fenitrothion (FNT). The effects of the EP cycles, pH value, and enrichment time on the electrochemical response of FNT were studied. With the optimum conditions, good linear relationships between the current of the reduction peak of the nitroso derivative of FNT and the concentration are obtained in the range of 10-150 and 150-4000 ng/mL, with a detection limit of 6 ng/mL (S/N = 3). β-CDP/GCE also exhibits a satisfactory applicability in cabbage and tap water, with recovery values between 98.43% and 112%. These outstanding results suggest that β-CDP/GCE could be a new effective alternative for the determination of FNT in real samples.
Collapse
Affiliation(s)
- Rong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Caihong Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Qiyang Nie
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Yougang Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Ruijuan Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Baiquan Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Sekar S, Huijun J, Liuzhu Z, Jin C, Lee S, Kim DY, Manikandan R. Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Fritea L, Tertiș M, Cristea C, Sandulescu R. Exploring the research progress about the applications of cyclodextrins and nanomaterials in electroanalysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Cecilia Cristea
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| | - Robert Sandulescu
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| |
Collapse
|
7
|
Anisimov YA, Evitts RW, Cree DE, Wilson LD. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers (Basel) 2021; 13:2722. [PMID: 34451261 PMCID: PMC8400915 DOI: 10.3390/polym13162722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
The development of polyaniline (PANI)/biomaterial composites as humidity sensor materials represents an emerging area of advanced materials with promising applications. The increasing attention to biopolymer materials as desiccants for humidity sensor components can be explained by their sustainability and propensity to absorb water. This review represents a literature survey, covering the last decade, which is focused on the interrelationship between the core properties and moisture responsiveness of multicomponent polymer/biomaterial composites. This contribution provides an overview of humidity-sensing materials and the corresponding sensors that emphasize the resistive (impedance) type of PANI devices. The key physicochemical properties that affect moisture sensitivity include the following: swelling, water vapor adsorption capacity, porosity, electrical conductivity, and enthalpies of adsorption and vaporization. Some key features of humidity-sensing materials involve the response time, recovery time, and hysteresis error. This work presents a discussion on various types of humidity-responsive composite materials that contain PANI and biopolymers, such as cellulose, chitosan and structurally related systems, along with a brief overview of carbonaceous and ceramic materials. The effect of additive components, such as polyvinyl alcohol (PVA), for film fabrication and their adsorption properties are also discussed. The mechanisms of hydration and proton transfer, as well as the relationship with conductivity is discussed. The literature survey on hydration reveals that the textural properties (surface area and pore structure) of a material, along with the hydrophile-lipophile balance (HLB) play a crucial role. The role of HLB is important in PANI/biopolymer materials for understanding hydration phenomena and hydrophobic effects. Fundamental aspects of hydration studies that are relevant to humidity sensor materials are reviewed. The experimental design of humidity sensor materials is described, and their relevant physicochemical characterization methods are covered, along with some perspectives on future directions in research on PANI-based humidity sensors.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| | - Richard W. Evitts
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Duncan E. Cree
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
8
|
Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 2021; 179:196-205. [PMID: 33675826 DOI: 10.1016/j.ijbiomac.2021.02.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite ((PABA-SAL)@AuNPs) was fabricated. Aniline boronic acid (ABA) served as reductant of gold salt, all within the SAL solution. While ABA reduced gold salt to its nanoparticles, the ABA monomer was also oxidized to its conducting polymeric form (PABA). The presence of PABA in the reaction mixture exerted solubility and stability challenge, thus SAL was used as stabilizer and solubilizer for PABA. The numerous cis-diol groups of SAL could bind to boronic acid groups of PABA to furnish PABA-SAL repeating polymer structure for AuNPs anchoring. Sparkling ruby red (PABA-SAL)@AuNPs have absorption peaks at 529 and 718 nm. Average particle sizes of nanocomposite were within 15-20 nm, with hydrodynamic diameter of 48.6 ± 0.9 nm, zeta potential of -32.5 ± 1.6 mV and conductivity value of 2015.3 ± 3.2 μS/cm. (PABA-SAL)@AuNPs possessed antibacterial activities against seafood associated bacterial isolates, with MIC and MBC ranging from 4 to 8 μg/mL. The moderate antioxidant capacity of (PABA-SAL)@AuNPs was observed, without any deleterious damages on human red blood cells. It also has good biocompatibility on Caco-2 and RAW 264.7, with cell viability not less than 70%. These results confirm the high prospect of (PABA-SAL)@AuNPs for possible biomedical applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand; Department of Chemistry/Biochemistry/Molecular Biology, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sudarshan Singh
- Excellence Research Laboratory on Natural Products, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| |
Collapse
|
9
|
A Dual Functional Conductive Hydrogel Containing Titania@Polypyrrole-Cyclodextrin Hybrid Nanotubes for Capture and Degradation of Toxic Chemical. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Bae J, Hwang Y, Park SH, Park SJ, Lee J, Kim HJ, Jang A, Park S, Kwon OS. An elaborate sensor system based on conducting polymer-oligosaccharides in hydrogel and the formation of inclusion complexes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
|
12
|
Polyacetylene polyelectrolyte via the non-catalyst polymerization of 2-ethynylpyridine using heptafluorobenzyl iodide. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Belenguer-Sapiña C, Pellicer-Castell E, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138266. [PMID: 32251885 DOI: 10.1016/j.scitotenv.2020.138266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants whose wide industrial use has been banned over the years in most countries due to their persistence and bioaccumulation. In fact, the International Agency for Research on Cancer defined them in 2016 as carcinogenic to humans based on sufficient evidence of an increased risk of cancer, being children and pregnant or lactating women the most vulnerable population subgroups. In this work, a new alternative for the determination of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in water samples has been developed by using a cyclodextrin-containing silica microparticulated material as an adsorbent in solid-phase extraction. Gas chromatography coupled to an electron capture detector has been used in the quantification step. The methodology allows quantifying polychlorinated biphenyls at very trace levels, with limits of detection between 0.2 and 1.7 ng L-1. Other parameters such as the repeatability, with coefficients of variation lower than 11%, were likewise established. To end, real water samples were analyzed, and the results were comparable with those obtained with a reference method. The proposed methodology can be utilized for assessing the presence of these compounds in the environment and can come in handy for evaluation and remediation purposes.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
14
|
|