Kim J, Lee JE, Lee HW, Jeon JK, Song J, Jung SC, Tsang YF, Park YK. Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature.
JOURNAL OF HAZARDOUS MATERIALS 2020;
397:122577. [PMID:
32417604 DOI:
10.1016/j.jhazmat.2020.122577]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
We investigated the catalytic efficiency of Mn-based bimetallic oxides in degrading toluene and ozone at room temperature. The room temperature-active bimetallic oxide catalysts were prepared by the addition of Fe, Cu, Ru, and Ag precursors to Mn/HZSM-5. We obtained H2-temperature-programmed reduction (H2-TPR) profiles, X-ray diffraction patterns, and X-ray photoelectron spectra to investigate the characteristics of the prepared catalysts. The catalytic efficiency of Mn-based bimetallic oxide catalysts in degrading toluene and ozone at room temperature was mostly improved by the addition of the secondary metals. The prepared bimetallic oxide catalysts, Cu-Mn/HZSM-5, Fe-Mn/HZSM-5, Ru-Mn/HZSM-5, and Ag-Mn/HZSM-5, enhanced efficiency for toluene removal compared to Mn/HZSM-5. The H2-TPR profiles of the Mn-based bimetallic oxide catalysts showed stronger and broader adsorption-desorption bands at lower temperatures than the profile of Mn/HZSM-5. Additionally, the ratio of the surface defective oxygen over the lattice oxygen on the bimetallic oxide catalysts was higher than that of Mn-only catalysts; the ratio of Mn3+ over Mn4+ was higher for all bimetallic oxide catalysts, as well. Among the bimetallic oxide catalysts, Ru-Mn/HZSM-5 showed the highest efficiency for the removal of toluene to COx due to the synergetic effect of the oxidation state and reducible potential at room temperature.
Collapse