1
|
Reddy Inta H, Koppisetti HVSRM, Ghosh S, Roy A, Mahalingam V. Ni
3
Se
4
Nanostructure as a Battery‐type Positive Electrode for Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202201041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Harish Reddy Inta
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Heramba V. S. R. M. Koppisetti
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Sourav Ghosh
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Avishek Roy
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
2
|
Wu S, Xu X, Yan X, Zhao H, Liu C, Wang Y, Su Q, Yin F, Yang Q. Sea urchin-like CoNi 2S 4materials derived from nickel hexamyanocobaltate for high-performance asymmetric hybrid supercapacitor. NANOTECHNOLOGY 2022; 33:485404. [PMID: 35803093 DOI: 10.1088/1361-6528/ac7fa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, a mild chemical precipitation method and simple hydrothermal treatment of the nickel hexamyanocobaltate precursor strategy are developed to prepare a sea urchin-like CoNi2S4compound with remarkable specific capacity and excellent cycling stability. The prepared CoNi2S4has an outstanding specific capacity of 149.1 mA h g-1at 1 A g-1and an initial capacity of 83.1% after 3000 cycles at 10 A g-1. Moreover, the porous carbon nanospheres (PCNs) with exhibit cycling stability (94.7% of initial specific capacity after 10 000 cycles at 10 A g-1) are selected as negative electrode to match CoNi2S4positive electrode for assembly of CoNi2S4//PCNs asymmetric supercapacitor (ASC). Satisfactorily, the as-assembled CoNi2S4//PCNs ASC exhibits an impressive energy density of 41.6 Wh kg-1at 797 W kg-1, as well as the suitable capacity retention of 82.8% after 10 000 cycles. The superior properties of the device demonstrated that the as-prepared material is potential energy storage material.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xin Xu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xiangtao Yan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Huanlei Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Chaoyang Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Fenping Yin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730030, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Zheng X, Cao X, Yang C, Zhao Q, Zhang Y, Xia X. Facile Synthesis of CoSe/Co 3O 4-CNTs/NF Composite Electrode for High-Performance Asymmetric Supercapacitor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5841. [PMID: 36079226 PMCID: PMC9457315 DOI: 10.3390/ma15175841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Electrode materials are key factors for supercapacitors to endow them with excellent electrochemical properties. Here, a novel hybrid structure of a CoSe/Co3O4-CNTs binder free composite electrode on nickel foam was prepared via a facile flame method, followed by an electrodeposition process. Benefitting from the synergetic effects of the multicomponent (with low resistances of 1.542 Ω cm2 and a moderate mesoporous size of 3.12 nm) and the enlarged specific surface area of the composite material (77.4 m2 g-1), the CoSe/Co3O4-CNTs composite electrode delivers a high specific capacitance of 2906 F g-1 at 5 mV s-1 with an excellent rate stability. The fabricated CoSe/Co3O4-CNTs/NF//AC ASC exhibits a high energy density of 43.4 Wh kg-1 at 0.8 kW kg-1 and a long cycle life (92.7% capacitance retention after 10,000 cycles).
Collapse
Affiliation(s)
- Ying Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xiang Zheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianjun Cao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chengtao Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qiang Zhao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinhui Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
4
|
Ye Y, Yang C, Chen P, Ma C, Chen X, Guo K. Thorn-like nanostructured NiCo2S4 arrays anchoring graphite paper as self-supported electrodes for ultrahigh rate flexible supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Lee YH, Soo Kang J, Jo IR, Sung YE, Ahn KS. Double-layer cobalt selenide/nickel selenide with web-like nanostructures as a high-performance electrode material for supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
One-step synthesis and energy-storage application of Ni–Se–S/nickel foam nanoarrays with high areal specific capacitance. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Sun H, Wang C, Qi Z, Hu W, Zhang Z. Nanostructure Nickel-Based Selenides as Cathode Materials for Hybrid Battery-Supercapacitors. Front Chem 2021; 8:611032. [PMID: 33604327 PMCID: PMC7884856 DOI: 10.3389/fchem.2020.611032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Supercapacitors (SCs) have attracted many attentions and already became part of some high-power derived devices such as Tesla's electric cars because of their higher power density. Among all types of electrical energy storage devices, battery-supercapacitors are the most promising for superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC usually consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs have resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the nickel-based selenides nanostructured which applied as high-performance cathode materials for SCs. Different nickel-based selenides materials are highlighted in various categories, such as nickel-cobalt-based bimetallic chalcogenides and nickel-M based selenides. Also, we mentioned material modification for this material type. Finally, the designing strategy and future improvements on nickel-based selenides materials for the application of SCs are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Zhijie Zhang
- Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
9
|
Chebrolu VT, Balakrishnan B, Aravindha Raja S, Cho I, Bak JS, Kim HJ. The one-step electrodeposition of nickel phosphide for enhanced supercapacitive performance using 3-mercaptopropionic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00367k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TMPs have received considerable attention for various applications, including the water splitting reaction (hydrogen evolution reaction and oxygen evolution reaction), methanol oxidation, the oxygen reduction reaction, rechargeable batteries, and supercapacitors.
Collapse
Affiliation(s)
| | - Balamuralitharan Balakrishnan
- Department of Electronics and Communication Engineering
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology
- Chennai 600062
- India
| | | | - Inho Cho
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jin-Soo Bak
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hee-Je Kim
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|