1
|
Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Rahmati MA, Rahamooz-Haghighi S, Mousazadeh N, Mohammadi A, Ertas YN, Ramazani A, Huseynova I, Khalilov R, Davaran S, Webster TJ, Kavetskyy T, Eftekhari A, Nosrati H, Mirsaeidi M. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): diagnosis, treatment, therapy and future perspectives. Nanomedicine (Lond) 2021; 16:497-516. [PMID: 33683164 PMCID: PMC7938776 DOI: 10.2217/nnm-2020-0441] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19, as an emerging infectious disease, has caused significant mortality and morbidity along with socioeconomic impact. No effective treatment or vaccine has been approved yet for this pandemic disease. Cutting-edge tools, especially nanotechnology, should be strongly considered to tackle this virus. This review aims to propose several strategies to design and fabricate effective diagnostic and therapeutic agents against COVID-19 by the aid of nanotechnology. Polymeric, inorganic self-assembling materials and peptide-based nanoparticles are promising tools for battling COVID-19 as well as its rapid diagnosis. This review summarizes all of the exciting advances nanomaterials are making toward COVID-19 prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Rahimi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faezeh Mozafari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Salehiabar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Mohammad Amin Rahmati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rahamooz-Haghighi
- Department of Plant Production & Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research & Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan
| | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Biophysics & Biochemistry, Baku State University, Baku, Azerbaijan
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow 119991, Russian Federation
| | - Soodabeh Davaran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow 119991, Russian Federation
- Polymer Institute of SAS, Dúbravská cesta 9, Bratislava 845 41, Slovakia
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Mehdi Mirsaeidi
- Department of Public Health Sciences, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
2
|
Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2020; 268:120597. [PMID: 33360074 PMCID: PMC7834201 DOI: 10.1016/j.biomaterials.2020.120597] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles’ delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Collapse
Affiliation(s)
- David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| | - Sytze H T Jorritsma
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Benjamin Evert
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| |
Collapse
|
5
|
Towards the Development of a 3-D Biochip for the Detection of Hepatitis C Virus. SENSORS 2020; 20:s20092719. [PMID: 32397590 PMCID: PMC7249126 DOI: 10.3390/s20092719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The early diagnostics of hepatitis C virus (HCV) infections is currently one of the most highly demanded medical tasks. This study is devoted to the development of biochips (microarrays) that can be applied for the detection of HCV. The analytical platforms of suggested devices were based on macroporous poly(glycidyl methacrylate-co-di(ethylene glycol) dimethacrylate) monolithic material. The biochips were obtained by the covalent immobilization of specific probes spotted onto the surface of macroporous monolithic platforms. Using the developed biochips, different variants of bioassay were investigated. This study was carried out using hepatitis C virus-mimetic particles (VMPs) representing polymer nanoparticles with a size close to HCV and bearing surface virus antigen (E2 protein). At the first step, the main parameters of bioassay were optimized. Additionally, the dissociation constants were calculated for the pairs “ligand–receptor” and “antigen–antibody” formed at the surface of biochips. As a result of this study, the analysis of VMPs in model buffer solution and human blood plasma was carried out in a format of direct and “sandwich” approaches. It was found that bioassay efficacy appeared to be similar for both the model medium and real biological fluid. Finally, limit of detection (LOD), limit of quantification (LOQ), spot-to-spot and biochip-to-biochip reproducibility for the developed systems were evaluated.
Collapse
|