1
|
Khaleel SR, Ibrahim SS, Criscuoli A, Figoli A, Lawal DU, Alsalhy QF. Influence of Silane Treatment on CNM/PAC/PVDF Properties and Performance for Water Desalination by VMD. MEMBRANES 2025; 15:104. [PMID: 40277974 PMCID: PMC12028725 DOI: 10.3390/membranes15040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness is important. In this study, the effect of 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFTES) on the morphology and performance of CNM/PAC/PVDF membranes at various concentrations was investigated for the first time. Membrane characteristics such as FTIR, XRD, FE-SEM, EDX, contact angle, and hydrophobicity before and after modification were analyzed and tested using VMD for water desalination. The results showed that the membrane coated with 1 wt.% PFTES had a higher permeate flux and lower rejection than the membranes coated with the 2 wt.% PFTES. The 2 wt.% PFTES enhanced the contact angle to 117° and increased the salt rejection above 99.9%, with the permeate flux set to 23.2 L/m2·h and at a 35 g/L NaCl feed solution, 65 °C feed temperature, a 0.6 L/min feed flow rate, and 21 kPa (abs) vacuum pressure. This means that 2 wt.% PFTES-coated PVDF membranes exhibited slightly lower permeate flux with higher hydrophobicity, salt rejection, and stability over long-term operation. These outstanding results indicate the potential of the novel CNM/PAC/PVDF/PFTES membranes for saline water desalination. Moreover, this study presents useful guidance for the enhancement of membrane structures and physical properties in the field of saline water desalination using porous CNM/PAC/PVDF/PFTES membranes.
Collapse
Affiliation(s)
- Samraa R. Khaleel
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| | - Salah S. Ibrahim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| | - Alessandra Criscuoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy;
| | - Dahiru U. Lawal
- Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| |
Collapse
|
2
|
Muhamad NAS, Mohd Mokhtar N, Naim R, Lau WJ, Ismail NH. Treatment of wastewater from oil palm industry in Malaysia using polyvinylidene fluoride-bentonite hollow fiber membranes via membrane distillation system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124739. [PMID: 39168437 DOI: 10.1016/j.envpol.2024.124739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Membrane distillation (MD) is gaining increasing recognition within membrane-based processes for palm oil mill effluent (POME) treatment. This study aims to alter the physicochemical characteristics of polyvinylidene fluoride (PVDF) membranes through the incorporation of bentonite (B) at varying weight concentrations (ranging from 0.25 wt% to 1.0 wt%). Characterization was conducted to evaluate changes in morphology, thermal stability, surface characteristics and wetting properties of the resulting membranes. The resulting membranes were also tested using direct contact membrane distillation (DCMD) with POME as the feed solution, aiming to generate high-purity water. Results indicated that the PVDF-0.3B and PVDF-0.5B membranes achieved the highest water vapor flux. The finger-like structure and macrovoids present in these membranes aid in minimizing mass resistance during vapor transport and enhancing permeate flux. All membranes demonstrated exceptional performance in removing contaminants, eliminating total dissolved solids (TDS) and achieving over 99% rejection of chemical oxygen demand (COD), nitrate nitrogen (NN), color, and turbidity from the feed solution. The permeate water analysis showed that the PVDF-0.3B membrane had superior removal efficiency and met the standards set by the local Department of Environment (DOE). The PVDF-0.3B membrane was chosen as the preferred option because of its consistent flux and high removal efficiency. This study demonstrated that incorporating bentonite into PVDF membranes significantly enhanced their properties and performance for POME treatment.
Collapse
Affiliation(s)
- Nor Amirah Safiah Muhamad
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Nadzirah Mohd Mokhtar
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia; Bioaromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
| | - Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nor Hafiza Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
3
|
Liu Y, Zhou C, Chen L, Du J, Li Q, Lu C, Tan L, Huang X, Liu J, Dong L. Self-standing membranes for separation: Achievements and opportunities. Adv Colloid Interface Sci 2024; 332:103269. [PMID: 39128434 DOI: 10.1016/j.cis.2024.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Supported membranes and mixed matrix membranes have a limitation of harming the mass transfer due to the incompatibility between the support layer or the matrix and the active components of the membrane. Self-standing membranes, which could structurally abandon the support layer, altogether avoid the adverse effect, thus greatly facilitating the transmembrane mass transfer process. However, the abandonment of the support layer also reduces the membrane's mechanical properties and formability. In this review, our emphasis will be on self-standing membranes within the realm of materials and separation engineering. We will explore the materials employed in the fabrication of self-standing membranes, highlighting their ability to simultaneously enhance membrane performance and promote self-standing characteristics. Additionally, we will delve into the diverse techniques utilized for crafting self-standing membranes, encompassing interfacial polymerization, filtration, solvent casting, Langmuir-Blodgett & layer-by-layer assembly, electrospinning, compression, etc. Throughout the discussion, the merits and drawbacks associated with each of these preparation methods were elucidated. We also provide a brief overview of the applications of self-standing membranes, including water purification, gas separation, organic solvent nanofiltration, electrochemistry, and membrane reactor, as well as a brief description of the general strategies for performance enhancement of self-standing membranes. Finally, the current status of self-standing membranes and the challenges they may encounter were discussed.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Xiaowei Huang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, PR China.
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
4
|
Shakayeva AK, Yeszhanov AB, Borissenko AN, Kassymzhanov MT, Zhumazhanova AT, Khlebnikov NA, Nurkassimov AK, Zdorovets MV, Güven O, Korolkov IV. Surface Modification of Polyethylene Terephthalate Track-Etched Membranes by 2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl Acrylate for Application in Water Desalination by Direct Contact Membrane Distillation. MEMBRANES 2024; 14:145. [PMID: 39057653 PMCID: PMC11278615 DOI: 10.3390/membranes14070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
In this work, the surfaces of poly (ethylene terephthalate) track-etched membranes (PET TeMs) with pore sizes of 670-1310 nm were hydrophobized with 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate (DFHA) by photoinitiated graft polymerization. Attenuated total reflection FTIR spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectrometer (EDX), and contact angle measurements were used to identify and characterize the TeMs. The optimal parameters for graft polymerization were determined as follows: polymerization time of 60 min, monomer concentration of 30%, and distance from the UV source of 7 cm. The water contact angle of the modified membranes reached 97°, which is 51° for pristine membranes. The modified membranes were tested for water desalination using direct contact membrane distillation (DCMD) method. The effects of membrane pore size, the degree of grafting, and salt concentration on the performance of membrane distillation process were investigated. According to the results obtained, it has been concluded that large pore size hydrophobic TeMs modified by using DFHA could be used for desalinating water.
Collapse
Affiliation(s)
- Aigerim Kh. Shakayeva
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | - Arman B. Yeszhanov
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | | | - Murat T. Kassymzhanov
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Ainash T. Zhumazhanova
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | | | - A. K. Nurkassimov
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| |
Collapse
|
5
|
Tarek Ghaly S, Eldemerdash UN, El-Shazly AH. Morphology and Thermodynamic Study of a Novel Composite Membrane from Waste Polystyrene/Slag: Experimental Investigation. ACS OMEGA 2024; 9:23512-23522. [PMID: 38854541 PMCID: PMC11154918 DOI: 10.1021/acsomega.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
The development of the membrane surface and cross-sectional morphology is pivotal in influencing the effectiveness of membrane separation. In this study, evaluating the separation rates between the solvent and nonsolvent in the casting solution and the related thermodynamic alteration analysis were illustrated. Additionally, the rheological variations were determined by measuring the viscosity of the resulting dope solutions, providing an initial estimation of the phase separation kinetics. Asymmetric polystyrene (PS)/slag composite membrane, incorporating slag waste as an inorganic additive, was developed. Dimethylformamide (DMF) was utilized as the solvent, and sodium dodecyl sulfate (SDS) was employed as an anionic surfactant to facilitate the casting process. A tertiary system diagram approach involving waste PS, DMF, and water introducing slag as an inorganic additive and SDS as a surfactant was attained to promote the separation of the solvent and nonsolvent in the casting solution. These novel composite mixtures exhibited increased thermodynamic instability within the coagulation bath, facilitating the rapid separation of solid membranes from the dope solutions and forming composite membranes with significantly increased porosity (exceeding a 20% increase) compared to that of plain waste materials. The composite membrane characteristics were assessed with the widely used poly(vinylidene difluoride) (PVDF) membrane, showing comparative features and performance when tested on a membrane distillation (MD) cell; it gave a flux of 1 kg/m2·h. These promising characteristics positioned this novel PS/slag composite membrane as a candidate for various water-related applications.
Collapse
Affiliation(s)
- Salma Tarek Ghaly
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Central
Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, 11421 Cairo, Egypt
| | - Usama Nour Eldemerdash
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Benha
Faculty of Engineering, Benha University, 13511 Qaliobiya, Egypt
| | - A. H. El-Shazly
- Chemical
and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg AL Arab City, 21934 Alexandria, Egypt
- Chemical
Engineering Department, Faculty of Engineering, Alexandria University, 5424041 Alexandria, Egypt
| |
Collapse
|
6
|
Abrofarakh M, Moghadam H, Abdulrahim HK. Investigation of direct contact membrane distillation (DCMD) performance using CFD and machine learning approaches. CHEMOSPHERE 2024; 357:141969. [PMID: 38604515 DOI: 10.1016/j.chemosphere.2024.141969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Direct Contact Membrane Distillation (DCMD) is emerging as an effective method for water desalination, known for its efficiency and adaptability. This study delves into the performance of DCMD by integrating two powerful analytical tools: Computational Fluid Dynamics (CFD) and Artificial Neural Networks (ANN). The research thoroughly examines the impact of various factors, such as inlet temperatures, velocities, channel heights, salt concentration, and membrane characteristics, on the process's efficiency, specifically calculating the water vapor flux. A rigorous validation of the CFD model aligns well with established studies, ensuring reliability. Subsequently, over 1000 data points reflecting variations in input factors are utilized to train and validate the ANN. The training phase demonstrated high accuracy, with near-zero mean squared errors and R2 values close to one, indicating a strong predictive capability. Further analysis post-ANN training shed light on key relationships: higher membrane porosity boosts water vapor flux, whereas thicker membranes reduce it. Additionally, it was detailed how salt concentration, channel dimensions, inlet temperatures, and velocities significantly influence the distillation process. Finally, a mathematical model was proposed for water vapor flux as a function of key input factors. The results highlighted that salt mole fraction and hot water inlet temperature have the most effect on the water vapor flux. This comprehensive investigation contributes to the understanding of DCMD and emphasizes the potential of combining CFD and ANN for optimizing and innovating water desalination technology.
Collapse
Affiliation(s)
- Moslem Abrofarakh
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hamid Moghadam
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Hassan K Abdulrahim
- Water Research Center (WRC), Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
7
|
Yeszhanov AB, Korolkov IV, Güven O, Melnikova GB, Dosmagambetova SS, Borissenko AN, Nurkassimov AK, Kassymzhanov MT, Zdorovets MV. Effect of hydrophobized PET TeMs membrane pore-size on saline water treatment by direct contact membrane distillation. RSC Adv 2024; 14:4034-4042. [PMID: 38288145 PMCID: PMC10823361 DOI: 10.1039/d3ra07475g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
This paper describes the desalination process by membrane distillation (MD) using track-etched membranes (TeMs). Hydrophobic track-etched membranes based on poly(ethylene terephthalate) (PET TeMs) with pore diameters from 700 to 1300 nm were prepared by UV-initiated graft polymerization of lauryl methacrylate (LMA) inside the nanochannels. Modified PET TeMs were investigated by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and contact wetting angle (CA) measurements. Hydrophobic PET TeMs were tested for treating saline solutions of different concentrations by the direct contact membrane distillation (DCMD) method. The influence of membrane pore diameter and salt solution concentration on the water flux and rejection degree were investigated. Membranes with CA 94 ± 4° were tested in the direct contact membrane distillation (DCMD) of 7.5-30 g L-1 saline solution. Hydrophobic membranes with large pore sizes showed water fluxes in the range of 1.88 to 11.70 kg m-2 h-1 with salt rejection values of up to 91.4%.
Collapse
Affiliation(s)
- Arman B Yeszhanov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Ilya V Korolkov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Galina B Melnikova
- A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus 220072 Minsk Belarus
| | - Saule S Dosmagambetova
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | | - A K Nurkassimov
- JSC "Park of Nuclear Technologies" Kurchatova Str. 18/1 Kurchatov Kazakhstan
| | | | - Maxim V Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| |
Collapse
|
8
|
Alsebaeai MK, Ahmad AL, Seng OB. Potential effects of nano‐fumed silica particles (NFS)/PVDF mixed matrix hollow fiber membrane on the performance of direct contact membrane distillation. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohammed Karama Alsebaeai
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
- Department of Chemical Engineering, Faculty of Engineering and Petroleum Hadhramout University Hadhramout Yemen
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
| | - Ooi Boon Seng
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
| |
Collapse
|
9
|
Modeling and Life Cycle Assessment of a Membrane Bioreactor–Membrane Distillation Wastewater Treatment System for Potable Reuse. SEPARATIONS 2022. [DOI: 10.3390/separations9060151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wastewater treatment for indirect potable reuse (IPR) is a possible approach to address water scarcity. In this study, a novel membrane bioreactor–membrane distillation (MBR-MD) system was evaluated to determine the environmental impacts of treatment compared to an existing IPR facility (“Baseline”). Physical and empirical models were used to obtain operational data for both systems and inform a life cycle inventory. Life cycle assessment (LCA) was used to compare the environmental impacts of each system. Results showed an average 53.7% reduction in environmental impacts for the MBR-MD system when waste heat is used to operate MD; however, without waste heat, the environmental impacts of MBR-MD are significantly higher, with average impacts ranging from 218% to 1400% greater than the Baseline, depending on the proportion of waste heat used. The results of this study demonstrate the effectiveness of the novel MBR-MD system for IPR and the reduced environmental impacts when waste heat is available to power MD.
Collapse
|
10
|
Jeevadason AW, Padmini S, Bharatiraja C, Kabeel AE. A review on diverse combinations and Energy-Exergy-Economics (3E) of hybrid solar still desalination. DESALINATION 2022; 527:115587. [DOI: 10.1016/j.desal.2022.115587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Zhang T, Guo X, Solomon B, Sharifpur M, Zhang LZ. A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Liu J, Albdoor AK, Lin W, Hai FI, Ma Z. Membrane fouling in direct contact membrane distillation for liquid desiccant regeneration: Effects of feed temperature and flow velocity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. WATER 2021. [DOI: 10.3390/w13233450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is needed for food processing facilities to carry out a number of tasks, including moving goods, washing, processing, and cleaning operations. This causes them to produce wastewater effluent, and they are typically undesirable since it contains a high volume of suspended solids, bacteria, dyestuffs, salts, oils, fats, chemical oxygen demand and biological oxygen demand. Therefore, treatment of food industry wastewater effluent is critical in improving process conditions, socio-economic benefits and our environmental. This short review summarizes the role of available membrane technologies that have been employed for food wastewater treatment and analyse their performance. Particularly, electrospun nanofiber membrane technology is revealed as an emerging membrane science and technology area producing materials of increasing performance and effectiveness in treating wastewater. This review reveals the challenges and perspectives that will assist in treating the food industry wastewater by developing novel membrane technologies.
Collapse
|
14
|
Naim R, Pei Sean G, Nasir Z, Mokhtar NM, Safiah Muhammad NA. Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery. MEMBRANES 2021; 11:839. [PMID: 34832068 PMCID: PMC8617921 DOI: 10.3390/membranes11110839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Membrane processes have been extensively employed in diverse applications, specifically in industrial wastewater treatment. The technological development in membrane processes has rapidly advanced and accelerated beyond its common principle and operation. Tremendous efforts have been made in the advancement of membrane materials, fabrication method, membrane modification and integration with other technologies that can augment the existing membrane processes to another level. This review presents the recent development of hollow fiber membranes applied in wastewater treatment and resource recovery. The membrane working principles and treatment mechanism were discussed thoroughly, with the recent development of these hollow fiber membranes highlighted based on several types of membrane application. The current challenges and limitations which may hinder this technology from expanding were critically described to offer a better perspective for this technology to be adopted in various potential applications.
Collapse
Affiliation(s)
- Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia;
| | - Goh Pei Sean
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malysia, Johor Bahru 81310, Johor, Malaysia;
| | - Zinnirah Nasir
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia;
| | - Nadzirah Mohd Mokhtar
- Faculty of Civil Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia; (N.M.M.); (N.A.S.M.)
| | - Nor Amirah Safiah Muhammad
- Faculty of Civil Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia; (N.M.M.); (N.A.S.M.)
| |
Collapse
|
15
|
Mohd Ramli M, Ahmad AL, Oluwasola EI, Leo CP. Non-solvent Flux Augmentation of an LDPE-Coated Polytetrafluoroethylene Hollow Fiber Membrane for Direct Contact Membrane Distillation. ACS OMEGA 2021; 6:25201-25210. [PMID: 34632179 PMCID: PMC8495701 DOI: 10.1021/acsomega.1c02887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation (MD) is a thermal technology for the desalination process that requires a hydrophobic microporous membrane to ensure that the membrane can maintain the liquid-vapor interface. This work aims to enhance the water permeation flux of the previously coated membrane by modifying the surface of the polytetrafluoroethylene hollow fiber (PTFE HF) membrane with a selected non-solvent such as acetone, cyclohexanone, and ethanol in low-density polyethylene as a polymeric coating solution. However, the modification using acetone and cyclohexanone solvents was unsuccessful because a reduction in membrane hydrophobicity was observed. The modified PTFE HF membrane with ethanol content exhibits high wetting resistance with a high water contact angle, which can withstand pore wetting during the direct contact MD process. Since MD operates under a lower operating temperature range (50-90 °C) compared to the conventional distillation, we herein demonstrated that higher flux could be obtained at 7.26 L m-2 h-1. Thus, the process is economically feasible because of lower energy consumption. Performance evaluation of the modified PTFE HF membrane showed a high rejection of 99.69% for sodium chloride (NaCl), indicating that the coated membrane preferentially allowed only water vapor to pass through.
Collapse
Affiliation(s)
- Mohamad
Razif Mohd Ramli
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| | - Abdul Latif Ahmad
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| | - Ebenezer Idowu Oluwasola
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
- Food
Technology Department, The Federal Polytechnic
Ado Ekiti, Ado Ekiti, 360231 Ekiti state, Nigeria
| | - Choe Peng Leo
- School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong
Tebal, 14300 Pulau Pinang, Malaysia
| |
Collapse
|
16
|
Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers (Basel) 2021; 13:polym13152520. [PMID: 34372131 PMCID: PMC8347132 DOI: 10.3390/polym13152520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Membrane distillation (MD) is a rapidly developing field of research and finds applications in desalination of water, purification from nonvolatile substances, and concentration of various solutions. This review presents data from recent studies on the MD process, MD configuration, the type of membranes and membrane hydrophobization. Particular importance has been placed on the methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process. Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF) and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are characterized by a narrow pore size distribution, precise values of the number of pores per unit area and narrow thickness. These properties of membranes allow them to be used for more accurate water purification and as model membranes used to test theoretical models (for instance LEP prediction).
Collapse
|
17
|
Stability of Ar/O 2 Plasma-Treated Polypropylene Membranes Applied for Membrane Distillation. MEMBRANES 2021; 11:membranes11070531. [PMID: 34357181 PMCID: PMC8306343 DOI: 10.3390/membranes11070531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
In the present work, Ar/O2 plasma treatment was used as a surface modification tool for polypropylene (PP) membranes. The effect of the plasma conditions on the properties of the modified PP surface has been investigated. For this purpose, the influence of gas composition and its flow rate, plasma power excitation as well as treatment time on the contact angle of PP membranes has been investigated. The properties of used membranes were determined after various periods of time: immediately after the modification process as well as after one, four and five years of storage. Moreover, the used membranes were evaluated in terms of their performance in long-term MD process. Through detailed studies, we demonstrated that the performed plasma treatment process effectively enhanced the performance of the modified membranes. In addition, it was shown that the surface modification did not affect the degradation of the membrane matrix. Indeed, the used membranes maintained stable process properties throughout the studied period.
Collapse
|
18
|
Mohd Ramli MR, Mat Radzi NH, Mohamad Esham MI, Alsebaeai MK, Ahmad AL. Advanced Application and Fouling Control in Hollow Fibre Direct Contact Membrane Distillation (HF-DCMD). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tian M, Zhu J, Yuan S, Zhang Y, Van der Bruggen B. A co-casting route enables the formation of skinless, hydrophobic poly(vinylidene fluoride) membranes for DCMD. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Ma Q, Xu Z, Wang R. Distributed solar desalination by membrane distillation: current status and future perspectives. WATER RESEARCH 2021; 198:117154. [PMID: 33930793 DOI: 10.1016/j.watres.2021.117154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Membrane distillation (MD) has been proven promising in solar-driven desalination. Moreover, its unique characteristics such as simple process, module compactness, high salt rejection rate, etc. allow for a small-scale device in a distributed system. Both theoretical and experimental researches on the coupling between solar collectors and MD aiming at compact and autonomous desalination system have been devoted to enhance freshwater productivity and energy efficiency. In this paper, certain critical gaps are summarized upon a panoramic review of the current status, including limited production and energy performance compared with commercial-scale desalination, unclear relation between solar collecting area and membrane area, and few discussions on efficient condensation, etc. To tackle these challenges, perspectives on the essential future research directions are proposed. Solar direct heating and solar concentration constitute the possible resolution to enhance solar energy utilization for higher water production, which also raise the question of optimizing solar/MD areas. Meanwhile, module stacking, module internal heat recovery and external evaporation heat recovery are deemed prospective in further reducing MD energy consumption. Subsequently, an enhanced vapor condensation needs more exploration. Those aspects and a potential combination among them are the main tasks in the near future, together with more field tests on small distributed solar-driven MD systems.
Collapse
Affiliation(s)
- Qiuming Ma
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Key Laboratory of Power Mechanical Engineering, MOE China, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenyuan Xu
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Key Laboratory of Power Mechanical Engineering, MOE China, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Key Laboratory of Power Mechanical Engineering, MOE China, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
21
|
Analysis of Polyvinylidene Fluoride Membranes Fabricated for Membrane Distillation. MEMBRANES 2021; 11:membranes11060437. [PMID: 34200725 PMCID: PMC8230010 DOI: 10.3390/membranes11060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022]
Abstract
The optimization of the properties for MD membranes is challenging due to the trade-off between water productivity and wetting tendency. Herein, this study presents a novel methodology to examine the properties of MD membranes. Seven polyvinylidene fluoride (PVDF) membranes were synthesized under different conditions by the phase inversion method and characterized to measure flux, rejection, contact angle (CA), liquid entry pressure (LEP), and pore sizes. Then, water vapor permeability (Bw), salt leakage ratio (Lw), and fiber radius (Rf) were calculated for the in-depth analysis. Results showed that the water vapor permeability and salt leakage ratio of the prepared membranes ranged from 7.76 × 10−8 s/m to 20.19 × 10−8 s/m and from 0.0020 to 0.0151, respectively. The Rf calculated using the Purcell model was in the range from 0.598 μm to 1.690 μm. Since the Rf was relatively small, the prepared membranes can have high LEP (more than 1.13 bar) even at low CA (less than 90.8°). The trade-off relations between the water vapor permeability and the other properties could be confirmed from the results of the prepared membranes. Based on these results, the properties of an efficient MD membrane were suggested as a guideline for the membrane development.
Collapse
|
22
|
Khan AA, Kim JO. Enhanced anti-wetting, slippery-surface membranes engineered for long-term operation with hypersaline synthetic and seawater feeds in membrane distillation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Lee WJ, Goh PS, Lau WJ, Ismail AF, Hilal N. Green Approaches for Sustainable Development of Liquid Separation Membrane. MEMBRANES 2021; 11:235. [PMID: 33806115 PMCID: PMC8064480 DOI: 10.3390/membranes11040235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Water constitutes one of the basic necessities of life. Around 71% of the Earth is covered by water, however, not all of it is readily available as fresh water for daily consumption. Fresh water scarcity is a chronic issue which poses a threat to all living things on Earth. Seawater, as a natural resource abundantly available all around the world, is a potential water source to fulfil the increasing water demand. Climate-independent seawater desalination has been touted as a crucial alternative to provide fresh water. While the membrane-based desalination process continues to dominate the global desalination market, the currently employed membrane fabrication materials and processes inevitably bring adverse impacts to the environment. This review aims to elucidate and provide a comprehensive outlook of the recent efforts based on greener approaches used for desalination membrane fabrication, which paves the way towards achieving sustainable and eco-friendly processes. Membrane fabrication using green chemistry effectively minimizes the generation of hazardous compounds during membrane preparation. The future trends and recommendations which could potentially be beneficial for researchers in this field are also highlighted.
Collapse
Affiliation(s)
- Wei Jie Lee
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Nidal Hilal
- Water Research Centre, New York University Abu Dhabi (NYUAD), Saadiyat Marina District, Abu Dhabi PO Box 129188, United Arab Emirates
| |
Collapse
|
24
|
Anqi AE, Mohammed AA. Evaluating Critical Influencing Factors of Desalination by Membrane Distillation Process-Using Multi-Criteria Decision-Making. MEMBRANES 2021; 11:164. [PMID: 33673407 PMCID: PMC7996794 DOI: 10.3390/membranes11030164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
Water desalination by membrane distillation (MD) can be affected by a wide range of operating parameters. The present work uses combinational approach of Analytical Hierarch process (AHP) and Fuzzy Analytical Hierarchy process (Fuzzy-AHP) to identify the most important parameters in the MD desalination. Five process parameters and key-performance indicators, named derivable outputs (DOs), are considered, along with the critical factors affecting these DOs in the current study. The DOs and the critical influencing factors (CIFs) are selected based on their experimental feasibility. The investigation involves five DOs, which are liquid entry pressure, thermal power consumption, permeate quality, permeate flux, and pumping (feed circulation) power. A total of twenty-five critical influencing factor were associated with the DOs. The identification of the DOs and CIFs was based on the literature review, and further analyses were performed. Both methods, AHP and Fuzzy-AHP, determined six extremely important CIFs in the desalination MD, which are feed temperature, feed concentration, or feed salinity; feed flow rate; membrane hydrophobicity; pore size; and membrane material. Moderately important CIFs are found to be four by both methods. These common CIFs are feed solution properties, membrane thickness, feed channel geometry, and pressure difference along the feed channel. Finally, the least preferred CIFs are four common in both methods that are MD configuration, duration of test, specific heat of feed solution, and viscosity.
Collapse
Affiliation(s)
- Ali E. Anqi
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | | |
Collapse
|
25
|
Mohd Ramli M, Ahmad AL, Leo CP. Surface Modification of Polytetrafluoroethylene Hollow Fiber Membrane for Direct Contact Membrane Distillation through Low-Density Polyethylene Solution Coating. ACS OMEGA 2021; 6:4609-4618. [PMID: 33644568 PMCID: PMC7905806 DOI: 10.1021/acsomega.0c05107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Membrane distillation (MD) is an attractive technology for the separation of highly saline water used with a polytetrafluoroethylene (PTFE) hollow fiber (HF) membrane. A hydrophobic coating of low-density polyethylene (LDPE) coats the outer surface of the PTFE membrane to resolve membrane wetting as well as increase membrane permeability flux and salt rejection, a critical problem regarding the MD process. LDPE concentrations in coating solution have been studied and optimized. Consequently, the LDPE layer altered membrane morphology by forming a fine nanostructure on the membrane surface that created a hydrophobic layer, a high roughness of membrane, and a uniform LDPE network. The membrane coated with different concentrations of LDPE exhibited high water contact angles of 135.14 ± 0.24 and 138.08 ± 0.01° for membranes M-3 and M-4, respectively, compared to the pristine membrane. In addition, the liquid entry pressure values of LDPE-incorporated PTFE HF membranes (M-1 to M-5) were higher than that of the uncoated membrane (M-0) with a small decrease in the percentage of porosity. The M-3 and M-4 membranes demonstrated higher flux values of 4.12 and 3.3 L m-2 h-1 at 70 °C, respectively. On the other hand, the water permeation flux of 1.95 L m-2 h-1 for M-5 further decreased when LDPE concentration is increased.
Collapse
|
26
|
Yu S, Kang G, Zhu Z, Zhou M, Yu H, Cao Y. Nafion-PTFE hollow fiber composite membranes for improvement of anti-fouling and anti-wetting properties in vacuum membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Leaper S, Abdel-Karim A, Gorgojo P. The use of carbon nanomaterials in membrane distillation membranes: a review. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-1993-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractMembrane distillation (MD) is a thermal-based separation technique with the potential to treat a wide range of water types for various applications and industries. Certain challenges remain however, which prevent it from becoming commercially widespread including moderate permeate flux, decline in separation performance over time due to pore wetting and high thermal energy requirements. Nevertheless, its attractive characteristics such as high rejection (ca. 100%) of nonvolatile species, its ability to treat highly saline solutions under low operating pressures (typically atmospheric) as well as its ability to operate at low temperatures, enabling waste-heat integration, continue to drive research interests globally. Of particular interest is the class of carbon-based nanomaterials which includes graphene and carbon nanotubes, whose wide range of properties have been exploited in an attempt to overcome the technical challenges that MD faces. These low dimensional materials exhibit properties such as high specific surface area, high strength, tuneable hydrophobicity, enhanced vapour transport, high thermal and electrical conductivity and others. Their use in MD has resulted in improved membrane performance characteristics like increased permeability and reduced fouling propensity. They have also enabled novel membrane capabilities such as in-situ fouling detection and localised heat generation. In this review we provide a brief introduction to MD and describe key membrane characteristics and fabrication methods. We then give an account of the various uses of carbon nanomaterials for MD applications, focussing on polymeric membrane systems. Future research directions based on the findings are also suggested.
Collapse
|
28
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|
29
|
Yeszhanov AB, Korolkov IV, Gorin YG, Dosmagambetova SS, Zdorovets MV. Membrane distillation of pesticide solutions using hydrophobic track-etched membranes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01173-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|