1
|
Zhao Y, Yang X, Luo J, Wei Y, Wang H. Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Lv J, Cui Y, Yang J, Li L, Zhou X, Lu J, He G. Inorganic Pillar Center-Facilitated Counterdiffusion Synthesis for Highly H 2 Perm-Selective KAUST-7 Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4297-4306. [PMID: 35016503 DOI: 10.1021/acsami.1c21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorinated metal-organic framework materials (NbOFFIVE-1-Ni, also referred to as KAUST-7) have attracted widespread attention because of their high chemical stability and thermal stability, outstanding tolerance with water and H2S, and high CO2-adsorption selectivity over H2 and CH4. KAUST-7 was expected to be a new membrane material candidate for H2/CO2 separation because of the hindered permeation of CO2 resulting from the interaction between CO2 and (NbOF5)2- of the KAUST-7 framework. A highly H2 perm-selective KAUST-7 membrane was first achieved using a novel strategy of inorganic pillar center-facilitated counterdiffusion (IPCFCD) proposed by us. The IPCFCD method not only effectively avoided the corrosion of hydrofluoric acid to α-Al2O3 tubes in the process of preparing KAUST-7 membranes, but also better reduced grain boundary defects because of the faster nucleation rate and resultant high crystallinity. The KAUST-7 membrane exhibited a high H2/CO2 separation factor (SF) of 27.30 for the 1:1 H2/CO2 binary gas mixture with a high H2 permeance of 5.30 × 10-7 mol m-2 s-1 Pa-1 under ambient conditions and a slight decrease of the H2/CO2 SF with increasing operation temperature and presence of steam. This study highlighted the importance of pre-synthesizing inorganic pillar centers (NiNbOF5 intermediate) and the innovation of a membrane formation process for synthesizing polycrystalline KAUST-7 membranes. Most important of all, our study provided a novel approach to overcome the challenge in fabricating metal-organic framework membranes containing corrosive reactants for the corresponding supports.
Collapse
Affiliation(s)
- Jinyin Lv
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanwen Cui
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liangqing Li
- Laboratory of Functional Materials, School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, P. R. China
| | - Xuerong Zhou
- Shandong Applied Research Center for Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Abdul Hamid MR, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong HK. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Chen H, Wang X, Liu Y, Yang T, Yang N, Meng B, Tan X, Liu S. A dual-layer ZnO–Al2O3 hollow fiber for directly inducing the formation of ZIF membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Wan Abdul Karim Ghani WA, Sutrisna PD, Jeong HK. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Chen MH, Lu QY, Li YM, Chu MM, Cao XB. ZnO@ZIF-8 core–shell heterostructures with improved photocatalytic activity. CrystEngComm 2021. [DOI: 10.1039/d1ce00559f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnO@ZIF-8 heterostructures with ZnO as the core and ZIF-8 as the shell were successfully fabricated and completely degraded methylene blue in ∼4.5 min under solar light irradiation.
Collapse
Affiliation(s)
- Mei-Hua Chen
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Qian-Ying Lu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Yi-Ming Li
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Ming-Ming Chu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Xue-Bo Cao
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| |
Collapse
|
7
|
Liu LJ, Chen GE, Mao HF, Wang Y, Wan JJ. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) in three particle sizes (40, 70 and 100 nm) was prepared through both solvothermal and hydrothermal methods and employed to decorate polyvinylidene fluoride (PVDF). The finger-like macro-voids, sponge-like poly-porous morphology and surface roughness of prepared membranes were characterized by SEM and AFM microscopy. The FTIR spectrum and XPS analysis bear out the chemical component. ZIF-8 has the characteristics of higher porosity and appropriate pore size, which is a condition for improving the permeability and pollution resistance of the modified membrane. Results indicated that different ZIF-8s have different enhancement effects on PVDF MMM. 100 nm ZIF-8 membrane possessed pure water flux (PWF) of 350 L m−2h−1, which was 10 times more than the bare membrane (30 L m−2h−1), and OVA flux recovery ration (FRR%) is 98%. 40 nm ZIF-8 membrane owned BSA FRR% of 98.4%. The 70 nm ZIF-8 showed the best mechanical properties. The dynamic contact angles of UP-Z70 ranged from 104.5° to 62.5° within 180 s. Furthermore, pore size distribution, molecular weight cut-off (MWCO) and porosity were also researched to evaluate the MMM. The dislodge of Reactive Black KN-B, Reactive Red 3BS and Reactive Brilliant Blue KN-R dyes by MMM were studied under different dye concentrations and transmembrane pressures. The membrane can provide selective separation methods for dyes and Reactive Brilliant Blue KN-R up to 99%. Overall, the permeability, hydrophilicy, anti-fouling performance and wastewater treatment of modified membranes were regulated by the ZIF-8 in a steerable blending reaction modification process.
Collapse
Affiliation(s)
- Lian-Jing Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Gui-E Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hai-Fang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jia-Jun Wan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|