1
|
Rispandi, Simanjuntak MS, Chu CS. Fabrication of an Optical Sensor Based on Eosin-Y-Doped Electrospun Fibers for Ammonia Detection via Wavelength Shifts. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:273. [PMID: 39997836 PMCID: PMC11858338 DOI: 10.3390/nano15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
This research presents a simple and effective technique to fabricate an optical sensor for ammonia detection, leveraging emission wavelength shifts as the sensing mechanism. The sensor comprises a cellulose acetate matrix doped with Eosin-Y, which serves as the electrospinning material. Photoluminescent micro/nanofibers were successfully fabricated using electrospinning and were stimulated by a 380 nm central wavelength LED. The Eosin-Y-doped electrospun fiber membranes exhibited a red emission peak at 580 nm, allowing ammonia to be detected in the linear concentration range of 0-500 ppm. The experimental results demonstrated a high sensitivity of 8.11, with a wavelength shift sensitivity of 0.029 nm/ppm in response to ammonia concentration changes. This optical sensing method effectively mitigates the influence of fluctuations in excitation light intensity, offering improved reliability. The Eosin-Y-containing electrospun fibers show great potential as a practical sensing material for detecting ammonia gas concentrations with high precision, supporting diverse applications in medical diagnostics, environmental monitoring, and industrial processes.
Collapse
Affiliation(s)
- Rispandi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Andalas, Padang 25163, West Sumatera, Indonesia;
| | - Manna Septriani Simanjuntak
- Department of Mechanical Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 24301, Taiwan;
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Cheng-Shane Chu
- Department of Mechanical Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 24301, Taiwan;
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Intelligent Medical Device, Ming Chi University of Technology, Taishan District, New Taipei City 24301, Taiwan
| |
Collapse
|
2
|
Ahmed S, Dolui SK. A dual emitting CsPbBr 3/Eu-BDC composite as a ratiometric photoluminescent turn-on probe for aliphatic amine sensing. Dalton Trans 2024; 53:8584-8592. [PMID: 38687325 DOI: 10.1039/d4dt00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The impressive photoluminescence properties of all inorganic cesium lead halide perovskite quantum dots (PeQDs) make them highly intriguing for fluorescence chemosensor applications. Herein, a ratiometric dual emitting perovskite-based sensor was designed by synthesizing fluorescent CsPbBr3 PeQDs in situ within a matrix of Eu-BDC (Eu(III) benzene-1,4-dicarboxylate). The results presented here establish the suggested sensor's quick and selective turn-on PL response to volatile primary aliphatic amine derivatives. In the presence of amines, the designed CsPbBr3/Eu-BDC sensor exhibits an enhancement of the PL signal of CsPbBr3 at 518 nm and the Eu-BDC signal at 615 nm served as a standard for constructing the ratiometric sensing system. Thereby, a visual color change from red to green was observed with the incremental addition of methylamine to the probe. A low detection limit of 0.083 ppm was determined for methylamine. In both the solution and vapor phases, this ratiometric sensor responds to a variety of primary aliphatic amines with very quick and strong fluorescence. Moreover, the sensor was effectively used for monitoring meat spoilage owing to the emission of biogenic amine vapor from meat products.
Collapse
Affiliation(s)
- Shahnaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
3
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
4
|
Putro DT, Chu CS. A novel optical dual sensor based on a coaxial electrospinning method for simultaneous sensing of oxygen and ammonia. Heliyon 2024; 10:e25983. [PMID: 38390081 PMCID: PMC10881840 DOI: 10.1016/j.heliyon.2024.e25983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The coaxial electrospinning method is widely used in a wide range of applications, including medical devices and sensing technology. This study proposes a novel optical dual sensor for simultaneous detection of oxygen (O2) and ammonia (NH3) based on coaxial electrospinning method to produce core-shell fiber membrane doped fluorescent dyes. The O2 (core) and NH3 (shell) sensitive dye membranes were successfully fabricated using coaxial electrospinning method by dissolving a polymer matrix, cellulose acetate (CA), with platinum (II) meso-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) and Eosin-Y, respectively. The optical dual sensor was illuminated by an UV LED to monitor the intensity change and wavelength shift in the presence of selected analyte gases. The experimental data show that the sensitivities of optical dual sensor were found to be 6.4 and 3.2 for O2 and NH3, respectively. The response and recovery times of O2 and NH3 sensing probes were measured to be 12 s/29 s and 65 s/66 s, respectively. Also, when exposed to NH3 gas gradually from 0 to 500 ppm, the wavelength shift data of Eosin-Y was started at 569.5 nm, 573.9 nm, 578.4 nm, 579.4 nm, 580.8 nm, and 582.2 nm, respectively. In applications, the proposed optical dual sensor based on coaxial electrospinning method can detect O2 and NH3 gases simultaneously.
Collapse
Affiliation(s)
- Dimas Trio Putro
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
| | - Cheng-Shane Chu
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
- Department of Mechanical Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
| |
Collapse
|
5
|
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. MEMBRANES 2023; 13:441. [PMID: 37103868 PMCID: PMC10146296 DOI: 10.3390/membranes13040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
6
|
Park B, Kang H, Han S, Kim HU, Cho Y, Huh YS, Kang SM. The Fabrication of Cesium Lead Bromide-Coated Cellulose Nanocomposites and Their Effect on the Detection of Nitrogen Gas. SENSORS (BASEL, SWITZERLAND) 2022; 22:7737. [PMID: 36298086 PMCID: PMC9611072 DOI: 10.3390/s22207737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, we fabricate cesium lead bromide nanofibers (CsPbBr3 NFs) via the attachment of cesium lead bromide nanocrystals (CsPbBr3 NCs) on the surface of electrospun cellulose nanofibers (CNFs) and employ them in a sensor to effectively detect gaseous nitrogen. The CsPbBr3 NFs are produced initially by producing CsPbBr3 NCs through hot injection and dispersing on hexane, followed by dipping CNFs and ultrasonicate for 1 h. Morphological characterization through visual, SEM and TEM image, and crystalline structure analysis by XRD and FT-IR analysis of CsPbBr3 NFs and NCs show similar spectra except for PL due to unavoidable damage during the ultrasonication. Gaseous nitrogen is subsequently detected using the photoluminescence (PL) property of CsPbBr3 NFs, in which the PL intensity dramatically decreases under various flow rate. Therefore, we believe that the proposed CsPbBr3 NFs show significant promise for use in detection sensors in various industrial field and decrease the potential of fatal damage to workers due to suffocation.
Collapse
Affiliation(s)
- Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Haneul Kang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
- Future Environment and Energy Research Institute, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
| |
Collapse
|
7
|
Xu X, Wang S, Chen Y, Liu W, Wang X, Jiang H, Ma S, Yun P. CsPbBr 3-Based Nanostructures for Room-Temperature Sensing of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39524-39534. [PMID: 35976102 DOI: 10.1021/acsami.2c09586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskites, as a dominant member of the perovskite family, have been proven to be excellent semiconductors due to the great successes for solar cells, light-emitting diodes, photodetectors, and nanocrystal photocatalysts. Despite the remarkable advances in those fields, there are few research studies focusing on gas and humidity-sensing performances, especially for pure CsPbBr3 and heterogeneous CsPbBr3@MoS2 composites. Here, we first report a valuable CsPbBr3 sensor prepared by electrospinning, and the excellent gas sensing performances are investigated. The CsPbBr3 sensor can quickly and effectively detect ethanolamine at room temperature. The response time is only 16 s, and the response to 100 ppm ethanolamine is as high as 29.87, besides the excellent repeatability and good stability. The theoretical detection limit is estimated to be 21 ppb. Furthermore, considering the irreplaceable role of heterostructures in regulating the electronic structure and supporting rich reaction boundaries, we also actively explored the EA sensitivity of inorganic CsPbBr3-based heterogeneous composites CsPbBr3@MoS2. At the same time, the roles of the critical capping agents OA and OAm are systematically investigated. This work demonstrates the great potential of all-inorganic halide perovskites in promising volatile organic compound detection.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyi Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Chen
- Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Wangwang Liu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoping Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongtao Jiang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuyi Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengdou Yun
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|