1
|
Qiao X, Zhang T, Zhang H, Xiong Z, Wang R, Zhang Z, Qiu S. Incorporation of ultrafine TiO 2/CdS heterojunction in dendritic porphyrins mesoporous silica nanospheres for efficient photocatalytic oxidation of styrene. J Colloid Interface Sci 2025; 691:137365. [PMID: 40132423 DOI: 10.1016/j.jcis.2025.137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
In this paper, a novel host-guest assembly strategy is developed to incorporate TiO2 nanoparticles and CdS quantum dots (CdS QDs) into the photoactive dendritic porphyrins mesoporous silica nanospheres (DPMSN) channels for establishing heterojunctions nanoreactors (designated as DPMSTNC). The well-defined dendritic architecture facilitates the high dispersion of TiO2/CdS heterojunctions within the DPMSN matrix, effectively maximizing the interfacial contact area between the heterojunction components and the cobalt porphyrin framework. Crucially, the synergistic interplay of cobalt porphyrins incorporated in the silica framework and the ultra-small TiO2/CdS heterojunction in the dendritic channels promotes efficient charge transfer and separation in the nanoreactor. The optimized DPMSTNC nanoreactor exhibits excellent catalytic performance with a conversion of 96.0 % and a selectivity of 92.0 % in styrene oxidation, which significantly surpasses that of single-component catalysts and simple composite heterostructure catalysts. This nanoreactor design strategy, which combines spatially confined heterojunctions with photoactive porous frameworks, provides a novel and versatile platform for developing high-efficiency photocatalytic systems through precise nanoarchitectural control.
Collapse
Affiliation(s)
- Xiaoyun Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tingsong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Huibin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeshan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zongtao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Sondezi N, Njengele-Tetyana Z, Matabola KP, Makhetha TA. Sol-Gel-Derived TiO 2 and TiO 2/Cu Nanoparticles: Synthesis, Characterization, and Antibacterial Efficacy. ACS OMEGA 2024; 9:15959-15970. [PMID: 38617704 PMCID: PMC11007835 DOI: 10.1021/acsomega.3c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
This study reports on the antibacterial efficacy of both the TiO2 and TiO2/Cu nanoparticles prepared through the sol-gel method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis. The SEM and TEM showed the spherical morphology of the nanoparticles, while EDX and XPS confirmed the incorporation of Cu into the TiO2 nanoparticles. The XRD confirmed the formation of the tetragonal anatase phase of TiO2/Cu while the FTIR revealed the functional groups linked to the doped TiO2 nanoparticles. The thermal stability of TiO2/Cu was found to be lower than pure TiO2. Moreover, TiO2 and the doped TiO2 nanoparticles were notably effective against Bacillus subtilis(B. subtilis) andEscherichia coli(E. coli); however, the addition of Cu to TiO2 did not have any effect on the antibacterial activity probably due to the lower weight content in the composites. Interestingly, the antibacterial efficiency was determined to be 90 and 80% against B. subtilis and E. coli, respectively.
Collapse
Affiliation(s)
- Njabulo Sondezi
- Department
of Chemical Sciences, University of Johannesburg,
Doornfontein Campus, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Water Research Node, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Zikhona Njengele-Tetyana
- Advanced
Materials Division, DSI/Mintek Nanotechnology
Innovation Centre, Private
Bag X3015, Randburg 2125, South Africa
| | - Kgabo Phillemon Matabola
- Advanced
Materials Division, DSI/Mintek Nanotechnology
Innovation Centre, Private
Bag X3015, Randburg 2125, South Africa
- Department
of Water and Sanitation, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Thollwana Andretta Makhetha
- Department
of Chemical Sciences, University of Johannesburg,
Doornfontein Campus, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Water Research Node, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
3
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
4
|
Wang S, Tuo B, Wang J, Mo Y. Research progress of TiO 2-based photocatalytic degradation of wastewater: bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125417-125438. [PMID: 38015394 DOI: 10.1007/s11356-023-31236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The pollution caused by modernization and industrialization has caused serious harm to the biodiversity of the earth. TiO2-based photocatalyst has been widely studied as an effective and sustainable water environment remediation material. In this study, we analyzed the status and research trends of TiO2-based photocatalytic degradation of wastewater in depression from 2003 to 2023 to provide a reference for further research. "Doping", "Modification" and "Heterojunction" were used as keywords, and 817 related academic literatures were screened out by using Web of Science database. Through the visualization software VOSviewer and CiteSpace, the authors, institutions and literature keywords were clustered. The results show that since 2008, the annual number of published papers on TiO2-based photocatalytic degradation of wastewater has increased from 9 to 114. Among them, China has published 432 articles and made great contributions, and there are many representative research teams. Chinese universities are the main body to study TiO2-based photocatalytic degradation of wastewater, but the cooperation between universities is not as close as that abroad. This paper comprehensively analyzes the research hotspots of TiO2-based photocatalytic degradation of wastewater, such as the doping of TiO2 and the construction of different types of heterojunctions of TiO2. It is expected that these analysis results will provide new research ideas for researchers to carry out future research on related topics and let researchers know in-depth research institutions and possible collaborators to conduct academic exchanges and discussions with active institutions.
Collapse
Affiliation(s)
- Shengqing Wang
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Biyang Tuo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China.
- National and Local Joint Laboratory for Effective Utilization of Mineral Resources in Karst Area, Guiyang, 550025, People's Republic of China.
| | - Jianli Wang
- College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, 412000, People's Republic of China
| | - Yuying Mo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
5
|
Kutorglo EM, Schwarze M, Nguyen AD, Tameu SD, Huseyinova S, Tasbihi M, Görke O, Primbs M, Šoóš M, Schomäcker R. Efficient full solar spectrum-driven photocatalytic hydrogen production on low bandgap TiO 2/conjugated polymer nanostructures. RSC Adv 2023; 13:24038-24052. [PMID: 37577094 PMCID: PMC10414019 DOI: 10.1039/d3ra04049f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
The development of photocatalysts that can utilize the entire solar spectrum is crucial to achieving efficient solar energy conversion. The utility of the benchmark photocatalyst, TiO2, is limited only to the UV region due to its large bandgap. Extending the light harvesting properties across the entire spectrum is paramount to enhancing solar photocatalytic performance. In this work, we developed low bandgap TiO2/conjugated polymer nanostructures which exhibit full spectrum activity for efficient H2 production. The highly mesoporous structure of the nanostructures together with the photosensitizing properties of the conjugated polymer enabled efficient solar light activity. The mesoporous TiO2 nanostructures calcined at 550 °C exhibited a defect-free anatase crystalline phase with traces of brookite and high surface area, resulting in the best performance in hydrogen production (5.34 mmol g-1 h-1) under sunlight simulation. This value is higher not only in comparison to other TiO2-based catalysts but also to other semiconductor materials reported in the literature. Thus, this work provides an effective strategy for the construction of full spectrum active nanostructured catalysts for enhanced solar photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Edith Mawunya Kutorglo
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Anh Dung Nguyen
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Simon Djoko Tameu
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Shahana Huseyinova
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- University of Santiago de Compostela, Department of Chemistry Avenida do Mestre Mateo 25 Santiago de Compostela 15706 Spain
| | - Minoo Tasbihi
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Oliver Görke
- Department of Ceramic Materials, Faculty III: Process Sciences, Technische Universität Berlin Berlin 10623 Germany
| | - Matthias Primbs
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technische Universität Berlin Berlin 10623 Germany
| | - Miroslav Šoóš
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Reinhard Schomäcker
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| |
Collapse
|
6
|
Costa IGF, Ribeiro SRFL, Nascimento LL, Patrocinio AOT, Cardoso VL, Batista FRX, Reis MHM. Well-dispersed titanium dioxide and silver nanoparticles on external and internal surfaces of asymmetric alumina hollow fibers for enhanced chromium (VI) photoreductions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62508-62521. [PMID: 36944834 DOI: 10.1007/s11356-023-26528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Heterogenous photocatalysis is a suitable alternative for wastewater treatment. The supporting of the solid catalyst in a porous material is suggested to facilitate catalyst recovery and reuse. Here we propose for the first time the evaluation of supporting silver (Ag)-decorated titanium dioxide (TiO2) catalysts on internal and external surfaces of alumina hollow fibers with asymmetric pore size distribution. The produced catalysts were considered for Cr(VI) photoreductions. The ultrasound-assisted process potentialized the distribution of Ag nanoparticles on the TiO2 surface. The loading of Ag nanoparticles at concentrations greater than 5 wt% was necessary to improve the TiO2 activity for Cr(VI) photoreduction. The loading of Ag nanoparticles at 30 wt% improved the Cr(VI) photoreduction of the single TiO2 catalyst from 40.49 ± 0.98 to 55.00 ± 0.83% after 180 min of reaction. Suspended and supported Ag-decorated TiO2 catalysts achieved total Cr(VI) photoreduction after 21 h of reaction. The adjusted reaction rate constant with the externally supported Ag-TiO2 catalyst was 3.57 × 10-3 ± 0.18 × 10-3 min-1. Similar reaction rate constants were achieved with suspended and internally supported catalysts (approximately 2.70 × 10-3 min-1). After 10 sequential reuses, all catalysts presented similar Cr(VI) photoreductions of approximately 66%. Nevertheless, the use of the externally supported catalyst is suggested for Cr(VI) photoreductions due to its superior catalyst activity at least in the first reuse cycles.
Collapse
Affiliation(s)
- Igor G F Costa
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Stella R F L Ribeiro
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Lucas L Nascimento
- Laboratory of Photochemistry and Materials Science (LAFOT-CM), Institute of Chemistry, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science (LAFOT-CM), Institute of Chemistry, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Vicelma L Cardoso
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Fabiana R X Batista
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Miria H M Reis
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
7
|
Popa A, Stefan M, Macavei S, Muresan LE, Leostean C, Floare-Avram CV, Toloman D. Photoluminescence and Photocatalytic Properties of MWNTs Decorated with Fe-Doped ZnO Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2858. [PMID: 37049152 PMCID: PMC10095740 DOI: 10.3390/ma16072858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The present work reports the photoluminescence (PL) and photocatalytic properties of multi-walled carbon nanotubes (MWCNTs) decorated with Fe-doped ZnO nanoparticles. MWCNT:ZnO-Fe nanocomposite samples with weight ratios of 1:3, 1:5 and 1:10 were prepared using a facile synthesis method. The obtained crystalline phases were evidenced by X-ray diffraction (XRD). X-ray Photoelectron spectroscopy (XPS) revealed the presence of both 2+ and 3+ valence states of Fe ions in a ratio of approximately 0.5. The electron paramagnetic resonance EPR spectroscopy sustained the presence of Fe3+ ions in the ZnO lattice and evidenced oxygen vacancies. Transmission electron microscopy (TEM) images showed the attachment and distribution of Fe-doped ZnO nanoparticles along the nanotubes with a star-like shape. All of the samples exhibited absorption in the UV region, and the absorption edge was shifted toward a higher wavelength after the addition of MWCNT component. The photoluminescence emission spectra showed peaks in the UV and visible region. Visible emissions are a result of the presence of defects or impurity states in the material. All of the samples showed photocatalytic activity against the Rhodamine B (RhB) synthetic solution under UV irradiation. The best performance was obtained using the MWCNT:ZnO-Fe(1:5) nanocomposite samples, which exhibited a 96% degradation efficiency. The mechanism of photocatalytic activity was explained based on the reactive oxygen species generated by the nanocomposites under UV irradiation in correlation with the structural and optical information obtained in this study.
Collapse
Affiliation(s)
- Adriana Popa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| | - Maria Stefan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| | - Laura Elena Muresan
- Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, 30 Fântânele, 400294 Cluj-Napoca, Romania;
| | - Cristian Leostean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| | - Cornelia Veronica Floare-Avram
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| | - Dana Toloman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.L.)
| |
Collapse
|
8
|
Liyanaarachchi H, Thambiliyagodage C, Liyanaarachchi C, Samarakoon U. Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
9
|
Wahyuni ET, Wahyuni S, Lestari ND, Suherman S. Utilization of tannery wastewater as a source of Cr doped into TiO2 for improving its activity under visible light in the Congo red degradation. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
10
|
Soleimani-Gorgani A, Al-Sabahi J, Akbaripoor Tafreshi Nejad S, Heydari M, Al-Abri M, Namaeighasemi A. Visible-Light-Driven Super-active Sn and GO Single- and Sn/Cu Co-doped Nanophotocatalysts for Phenol Degradation: Thin-Film Printability, Thermal Stability, and Cytotoxicity Assay. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Semiconductors Application Forms and Doping Benefits to Wastewater Treatment: A Comparison of TiO2, WO3, and g-C3N4. Catalysts 2022. [DOI: 10.3390/catal12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis has been vastly applied for the removal of contaminants of emerging concern (CECs) and other micropollutants, with the aim of future water reclamation. As a process based upon photon irradiation, materials that may be activated through natural light sources are highly pursued, to facilitate their application and reduce costs. TiO2 is a reference material, and it has been greatly optimized. However, in its typical configuration, it is known to be mainly active under ultraviolet radiation. Thus, multiple alternative visible light driven (VLD) materials have been intensively studied recently. WO3 and g-C3N4 are currently attractive VLD catalysts, with WO3 possessing similarities with TiO2 as a metal oxide, allowing correlations between the knowledge regarding the reference catalyst, and g-C3N4 having an interesting and distinct non-metallic polymeric structure with the benefit of easy production. In this review, recent developments towards CECs degradation in TiO2 based photocatalysis are discussed, as reference catalyst, alongside the selected alternative materials, WO3 and g-C3N4. The aim here is to evaluate the different techniques more commonly explored to enhance catalyst photo-activity, specifically doping with multiple elements and the formation of composite materials. Moreover, the possible combination of photocatalysis and ozonation is also explored, as a promising route to potentialize their individual efficiencies and overcome typical drawbacks.
Collapse
|
12
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
13
|
Effects of the Crystalline Properties of Hollow Ceria Nanostructures on a CuO-CeO2 catalyst in CO Oxidation. MATERIALS 2022; 15:ma15113859. [PMID: 35683157 PMCID: PMC9181753 DOI: 10.3390/ma15113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023]
Abstract
The development of an efficient and economic catalyst with high catalytic performance is always challenging. In this study, we report the synthesis of hollow CeO2 nanostructures and the crystallinity control of a CeO2 layer used as a support material for a CuO-CeO2 catalyst in CO oxidation. The hollow CeO2 nanostructures were synthesized using a simple hydrothermal method. The crystallinity of the hollow CeO2 shell layer was controlled through thermal treatment at various temperatures. The crystallinity of hollow CeO2 was enhanced by increasing the calcination temperature, but both porosity and surface area decreased, showing an opposite trend to that of crystallinity. The crystallinity of hollow CeO2 significantly influenced both the characteristics and the catalytic performance of the corresponding hollow CuO-CeO2 (H-Cu-CeO2) catalysts. The degree of oxygen vacancy significantly decreased with the calcination temperature. H-Cu-CeO2 (HT), which presented the lowest CeO2 crystallinity, not only had a high degree of oxygen vacancy but also showed well-dispersed CuO species, while H-Cu-CeO2 (800), with well-developed crystallinity, showed low CuO dispersion. The H-Cu-CeO2 (HT) catalyst exhibited significantly enhanced catalytic activity and stability. In this study, we systemically analyzed the characteristics and catalyst performance of hollow CeO2 samples and the corresponding hollow CuO-CeO2 catalysts.
Collapse
|
14
|
Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. NANOSCALE 2022; 14:6709-6734. [PMID: 35475489 DOI: 10.1039/d1nr08349j] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) has been heavily investigated owing to its low cost, benign nature and strong photocatalytic ability. Thus, TiO2 has broad applications including photocatalysts, Li-ion batteries, solar cells, medical research and so on. However, the performance of TiO2 is not satisfactory due to many factors such as the broad band gap (3.01 to 3.2 eV) and fast recombination of electron-hole pairs (10-12 to 10-11 s). Plenty of work has been undertaken to improve the properties, such as structural and dopant modifications, which broaden the applications of TiO2. This review mainly discusses the aspects of TiO2-modified nanoparticles including synthetic methods, modifications and applications.
Collapse
Affiliation(s)
- Jinqi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhiheng Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xiaoli Hu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wenli Miao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Linliang Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinbo Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
15
|
Heiba ZK, Mohamed MB, Badawi A. Structural and Optical Characteristic of Cu-Doped TiO2 Thin Film. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Joslin Ananth N, Gowri Shankar Rao R, Sherlin Vinita V, Samuel J, Shabna S, Shajin Shinu PM, Suresh S, Samson Y, Biju CS. Structural, Raman and optical investigations of TiO 2 nanoparticles prepared using hexamethylenetetramine. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1989684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- N. Joslin Ananth
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| | - R. Gowri Shankar Rao
- Department of Physics, Veltech Rangarajan Dr. Sagunthala R& D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, India
| | - V. Sherlin Vinita
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| | - J. Samuel
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| | - S. Shabna
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| | - P. M. Shajin Shinu
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| | - S. Suresh
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India
| | - Y. Samson
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
- Department of Physics, Annai Velankanni College, Kanyakumari, Tamilnadu, India
| | - C. S. Biju
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Abishekapatti, Tamilnadu, India
| |
Collapse
|
17
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
18
|
Danfá S, Martins RC, Quina MJ, Gomes J. Supported TiO 2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules 2021; 26:molecules26175363. [PMID: 34500795 PMCID: PMC8434047 DOI: 10.3390/molecules26175363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
The application of TiO2 as a slurry catalyst for the degradation of contaminants of emerging concern (CEC) in liquid effluents has some drawbacks due to the difficulties in the catalyst reutilization. Thus, sophisticated and expensive separation methods are required after the reaction step. Alternatively, several types of materials have been used to support powder catalysts, so that fixed or fluidized bed reactors may be used. In this context, the objective of this work is to systematize and analyze the results of research inherent to the application of ceramic materials as support of TiO2 in the photocatalytic CEC removal from liquid effluents. Firstly, an overview is given about the treatment processes able to degrade CEC. In particular, the photocatalysts supported in ceramic materials are analyzed, namely the immobilization techniques applied to support TiO2 in these materials. Finally, a critical review of the literature dedicated to photocatalysis with supported TiO2 is presented, where the performance of the catalyst is considered as well as the main drivers and barriers for implementing this process. A focal point in the future is to investigate the possibility of depurating effluents and promote water reuse in safe conditions, and the supported TiO2 in ceramic materials may play a role in this scope.
Collapse
|
19
|
Synthesis of Hollow Mesoporous TiN Nanostructures as An Efficient Catalyst Support for Methanol Electro-Oxidation. Catalysts 2021. [DOI: 10.3390/catal11070763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development of efficient catalyst materials that can drive high catalytic performance is challenging. Here, we report a well-defined hollow mesoporous TiN nanostructure for use as Pt catalyst support material for methanol electro-oxidation. The hollow TiN nanostructure was synthesized by the ammonia nitridation of pre-synthesized mother hollow anatase TiO2, which was prepared by SiO2 template-assisted sol–gel synthesis followed by chemical etching, acid treatment, and sequential calcination. The variation in the ammonia nitridation temperature allowed the crystalline properties of the samples to be finely tuned. As the ammonia nitrification temperature increased, the crystallinity of the resulting hollow TiN continuously increased, and the corresponding Pt catalysts showed enhanced activity toward methanol electro-oxidation. The hollow TiN-800 sample (H-TiN-800), with a well-developed pure TiN phase, exhibited the highest electrical conductivity and the lowest resistance. The corresponding Pt/H-TiN-800 catalyst exhibited significantly enhanced catalytic activity. In this study, we systemically analyzed the physicochemical characteristics and electrochemical performance of hollow TiN samples and their corresponding Pt catalysts.
Collapse
|
20
|
Chakraborty AK, Ganguli S, Bera S. Enhancing the photocatalytic efficiency of the BiOCl/Bi 3O 4Cl composite modified with WO 3 for environmental purification under visible light. NEW J CHEM 2021. [DOI: 10.1039/d1nj02825a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of WO3 in enhancing the photocatalytic behavior of the composite photocatalyst towards the decomposition of organic pollutants in the environment under visible light has been demonstrated.
Collapse
Affiliation(s)
- Ashok Kumar Chakraborty
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Sumon Ganguli
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong-4331, Bangladesh
| | - Sandipan Bera
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea
| |
Collapse
|