1
|
Han GY, Sun M, Zhao R, Junaid QM, Hou G, Mohmand NZK, Jia C, Liu Y, Van Der Voort P, Shi L, Feng X. Defect engineered Ti-MOFs and their applications. Chem Soc Rev 2025; 54:5081-5107. [PMID: 40261239 DOI: 10.1039/d4cs01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Titanium-based metal-organic frameworks (Ti-MOFs) hold great potential for applications in photocatalysis and other fields, owing to Ti's abundant reserves, low toxicity, and excellent photocatalytic and redox activity. However, Ti's strong affinity for oxygen often leads to Ti-MOFs being fully coordinated with ligands, which limits their catalytic and separation performance. Defect engineering provides an effective strategy to enhance the functionality of MOFs by introducing structural imperfections. Despite this, the synthesis of new Ti-MOFs and the incorporation of defects remain challenging due to the complex hydrolysis and reaction processes of Ti precursors and the uncertainty of Ti cluster formation. This review categorizes Ti-MOFs according to their diverse cluster structures, which play a key role in the development of new frameworks and defect engineering. It also examines various defect construction methods and their applications. Finally, insights from defect-engineered Zr-MOFs are discussed to inspire future advancements in the synthesis and application of defective Ti-MOFs.
Collapse
Affiliation(s)
- Guo-Ying Han
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Mingshuo Sun
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Ruixin Zhao
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Qazi Mohammad Junaid
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Guozhen Hou
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Numan Zada Khan Mohmand
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Chunmei Jia
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yiwei Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Lei Shi
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Xiao Feng
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
2
|
Gao H, Tang Y, Liu S, He C, Li H, Zhao L, Duan C. Eosin Y Post-Decorated Metal-Organic Framework as a Selectivity Regulator for the Alcohols Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37896-37905. [PMID: 39010647 DOI: 10.1021/acsami.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The selective oxidation of alcohols into aldehydes is a basic and significant procedure, with great potential for scientific research and industrial applications. However, as an important factor in the C(sp3)-H activation process, high selectivity is generally difficult to achieve due to the fact that the more easily activated properties of aldehydes are compared to alcohols. Herein, by the ingenious decoration of eosin Y into a Zr-based metal-organic framework (MOF-808), EY@MOF-808 was prepared as a selectivity regulator for the aerobic oxidation of the benzyl alcohols into corresponding aldehydes, possessing applicability for the benzylic alcohols with various substituents. By anchoring eosin Y on Zr6O4(OH)4 clusters of MOF-808 and maintaining open metal nodes with selective binding effects, the benzyl alcohol substrates were selectively coordinated to the unsaturated metal clusters adjacent to eosin Y, which ensured that the excited eosin Y rapidly activated substrates to generate carbon radicals by the hydrogen atom transfer (HAT) process. The rapid electron transfer (ET) simultaneously produced reactive oxygen species (O2•-) and then a combination of both to further promote the generation of benzaldehydes. The weak interaction of benzaldehydes with the skeleton allowed it to dissociate rapidly, thus preventing overoxidation. Under the catalysis of EY@MOF-808, the selectivity of various benzaldehydes was more than 99%. In contrast, eosin Y gave only benzoic acid products under the same conditions, which demonstrated the superiority of regulatory selectivity of EY@MOF-808. Taking advantage of the heterogeneity of the MOF, EY@MOF-808 was recycled four times without a decrease in its selectivity and avoided the quenching effect of eosin Y. The organic functional units postdecorated MOF-based photocatalyst strategy exhibits a promising new perspective approach to sustainably regulating the selectivity of inert oxidation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Gao D, Tang J, Zhang F, Wen C, Feng L, Wan C, Qu F, Liang X. Modulation of defects in metal organic gels to enhance anhydrous proton conduction from subzero to moderate temperature. J Colloid Interface Sci 2023; 650:19-27. [PMID: 37392496 DOI: 10.1016/j.jcis.2023.06.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Exploitation of solid-state proton-conducting materials with high anhydrous proton conductivity from subzero temperature (<273 K) to moderate temperature (>353 K) is a great challenge. Here, Brönsted acid-dopped zirconium-organic xerogels (Zr/BTC-xerogels) are prepared for anhydrous proton conduction from subzero to moderate temperature. Abundant acid sites and strong H-bonding interactions make the CF3SO3H (TMSA)-introduced xerogel gain high proton conductivity from 9.0 × 10-4 S cm-1 (253 K) to 1.40 × 10-2 S cm-1 (363 K) under anhydrous conditions, which are in the leading level. This provides a new possibility to develop wide-operating-temperature conductors.
Collapse
Affiliation(s)
- Dan Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China
| | - Jiyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| | - Chen Wen
- Beijing Spacecrafts, Beijing 100094, PR China
| | - Lei Feng
- Beijing Spacecrafts, Beijing 100094, PR China
| | - Chengan Wan
- Beijing Spacecrafts, Beijing 100094, PR China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
4
|
Rojas-Buzo S, Bohigues B, Salusso D, Corma A, Moliner M, Bordiga S. Synergic Effect of Isolated Ce 3+ and Pt δ+ Species in UiO-66(Ce) for Heterogeneous Catalysis. ACS Catal 2023; 13:9171-9180. [PMID: 37441231 PMCID: PMC10334465 DOI: 10.1021/acscatal.3c00502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/25/2023] [Indexed: 07/15/2023]
Abstract
In this work, we have synthesized through an efficient electrostatic deposition a Pt single-atom catalyst (SAC) supported on a Ce-MOF. The basic solution employed in the impregnation process favors the deprotonation of the hydroxyl groups allocated on the clusters that can easily interact with the cationic Pt species. The resulting material, denoted as Pt/UiO-66(Ce), shows an increment of Ce3+ content, as demonstrated by UV-vis and Ce L3-edge XANES spectroscopy. These Ce3+ species and their corresponding oxygen vacancies are able to accommodate very disperse Pt single sites. Moreover, Pt L3-edge XANES and CO-FTIR spectroscopy confirm the cationic nature of the supported Ptδ+ (2+ < δ < 4+). For comparison purpose, we have synthesized and characterized a well-known Pt single-site catalyst supported on nanocrystalline ceria, denoted as Pt/nCeO2. Since the simultaneous presence of Ce3+ and Ptδ+ on the MOF clusters were able to activate the oxygen molecules and the CO molecule, respectively, we tested Pt/UiO-66(Ce) for the CO oxidation reaction. Interestingly, this catalyst showed ∼six-fold increment in activity in comparison with the traditional Pt/nCeO2 material. Finally, the characterization after catalysis reveals that the Pt nature is preserved and that the activity is maintained during 14 h at 100 °C without any evidence of deactivation.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| | - Benjamin Bohigues
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Davide Salusso
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
- European
Synchrotron Radiation Facility, CS 40220, 38043 Cedex
9 Grenoble, France
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Manuel Moliner
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| |
Collapse
|
5
|
Mhatre CV, Wardzala JJ, Shukla PB, Agrawal M, Johnson JK. Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111793. [PMID: 37299696 DOI: 10.3390/nano13111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the μ3-OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the μ3-OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Collapse
Affiliation(s)
- Chinmay V Mhatre
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jacob J Wardzala
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Liang N, Hu X, Zhang X, Li W, Guo Z, Huang X, Li Z, Zhang R, Shen T, Zou X, Shi J. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal-Organic Frameworks as Response Signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7584-7592. [PMID: 37139942 DOI: 10.1021/acs.jafc.3c00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel ratiometric sensor using an electrochemically active metal-organic framework of Mo@MOF-808 and NH2-UiO-66 as response signals was developed to detect tetracycline (TET) in ultratrace quantities. To achieve the dual-response strategy, Mo@MOF-808, with a reduction peak at -1.06 V, and NH2-UiO-66, with an oxidation peak at 0.724 V, were used as signal probes directly. Concretely, Mo@MOF-808, single-stranded DNA (ssDNA), and complex system (Apt@NH2-UiO-66) of aptamer (Apt) and NH2-UiO-66 were sequentially immobilized on the electrode. With the addition of TET, Apt was hybridized with TET and Apt@NH2-UiO-66 was detached from the electrode, resulting in an increase in the current at -1.06 V and a decrease in the current at 0.724 V. Through this strategy, the sensor achieved a wide linear range (0.1-10000 nM) and a low limit of detection (0.009792 nM) for TET. Moreover, the ratiometric sensor exhibited better sensitivity, reproducibility, and stability than a single-signal sensor. Furthermore, the constructed sensor was successfully applied to detect TET in milk samples, suggesting excellent application prospects.
Collapse
Affiliation(s)
- Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Roujia Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Instrumental Analysis Center, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
7
|
Haruna A, Merican ZMA, Musa SG. Remarkable stability and catalytic performance of PW11M@MOF-808 (M=Mn and Cu) nanocomposites for oxidative desulfurization of fuel oil. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Ye G, Wan L, Zhang Q, Liu H, Zhou J, Wu L, Zeng X, Wang H, Chen X, Wang J. Boosting Catalytic Performance of MOF-808(Zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach. Inorg Chem 2023; 62:4248-4259. [PMID: 36857420 DOI: 10.1021/acs.inorgchem.2c04364] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Creation of rich open metal sites (defect) on the nodes of metal-organic frameworks (MOFs) is an efficient approach to enhance their catalytic performance in heterogeneous reactions; however, direct generation of such defects remains challenging. In this contribution, we developed an in situ green route for rapid fabrication of defective MOF-808(Zr) with rich Zr-OH/OH2 sites (occupying 25% Zr coordination sites) and hierarchical porosity without the assistance of formic acid and solvent. The optimal MOF-808(Zr) not only displayed superior activity in oxidative desulfurization (ODS) for removing 1000 ppm sulfur at ambient temperature within 20 min but also could convert 3.8 mmol of benzaldehyde to (dimethoxymethyl)benzene within 90 s at 30 °C. The turnover frequencies reached 45.4 h-1 for ODS and 3451 h-1 for acetalization, outperforming the most reported MOF-based catalysts. Theoretical calculation and experimental results show that the formed Zr-OH/OH2 can react with H2O2 to generate peroxo-zirconium species, which readily oxidize the sulfur compound. Our work provides a new approach to the synthesis of defect-rich MOF-808(Zr) with the accessibility of active sites for target reactions.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lulu Wan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingye Zeng
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hanlu Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xixi Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Design of hierarchically porous Zr-MOFs with reo topology and confined PMA for ultra-efficient oxidation desulfurization. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Synergistic effect of -COOH and Zr(IV) with a short distance in Zr-MOFs for promoting utilization of H2O2 in oxidative desulfurization. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Abdurrashid H, Merican ZMA, Musa SG. Recent advances in catalytic oxidative desulfurization of fuel oil – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Pangestu A, Lestari WW, Wibowo FR, Larasati L. Green Electro-Synthesized MIL-101(Fe) and Its Aspirin Detoxification Performance Compared to MOF-808. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Li J, Li C, Yang L, Liu Z, Gao R, Zhao J. PILs modified PMoW on silicon with hierarchical functional structure for ultra-deep oxidative desulfurization. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
A Short Review of Aerobic Oxidative Desulfurization of Liquid Fuels over Porous Materials. Catalysts 2022. [DOI: 10.3390/catal12020129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oxidative desulfurization (ODS) has attracted much attention owing to the mild working conditions and effective removal of the aromatic sulfur-containing compounds which are difficult to desulfurize using the industrial hydrodesulfurization (HDS) technique. Molecular oxygen in ambient air have been recognized as an ideal oxidant in ODS due to its easy availability, non-toxicity and low cost in recent years. However, molecular oxygen activation under mild operating conditions is still a challenge. Porous materials and their composites have drawn increasing attention due to their advantages, such as high surface area and confined pore space, along with their stability. These merits contribute to the fast diffusion of oxygen molecules and the formation of more exposed active sites, which make them ideal catalysts for aerobic oxidation reactions. The confined space pore size offers a means of catalytic activity and durability improvement. This gives rise to copious attention toward the porous catalysts in AODS. In this review, the progress in the characteristics and AODS catalytic activities of porous catalysts is summarized. Then, emphasis on the molecular oxygen activation mechanism is traced. Finally, the breakthroughs and challenges of various categories of porous catalysts are concluded.
Collapse
|