1
|
Mansourian-Tabaei M, Majdoub M, Sengottuvelu D, Stoddard DL, Thirumalai RVKG, Ucak-Astarlioglu MG, Al-Ostaz A, Nouranian S. Polyurea/Aminopropyl Isobutyl Polyhedral Oligomeric Silsesquioxane-Functionalized Graphene Nanoplatelet Nanocomposites for Force Protection Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19625-19641. [PMID: 38588400 DOI: 10.1021/acsami.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Herein, the development of new nanocomposite systems is reported based on one-part polyurea (PU) and aminopropyl isobutyl polyhedral oligomeric silsesquioxane (POSS)-functionalized graphene nanoplatelets (GNP-POSS) as compatible nanoreinforcements with the PU resin. GNP-POSS was effectively synthesized via a two-step synthesis protocol, including ultrasonication-assisted reaction and precipitation, and carefully characterized with respect to its chemical and crystalline structure, morphology, and thermal stability. FTIR and XPS spectroscopy analyses revealed that POSS interacts with the residual oxygen moieties of the GNPs through both covalent and noncovalent bonding. The X-ray diffraction pattern of GNP-POSS further revealed that the crystallinity of the GNPs was not altered after their functionalization with POSS. GNP-POSS was successfully incorporated in PU at contents of 1, 3, 5, and 10 wt % to yield PU/GNP-POSS nanocomposite films. An ATR-FTIR analysis of these films confirmed the presence of strong interfacial interactions between the urea groups of PU and the GNP-POSS functionalities. Moreover, the PU/GNP-POSS nanocomposite films exhibited enhanced thermal stability and mechanical properties compared to those of the neat PU film. The quasi-static tensile testing of the PU/GNP-POSS samples revealed remarkable enhancements in the tensile strength (from 7.9 for the neat PU to 25.1 MPa for PU/GNP-POSS) and Young's modulus (238-617 MPa), while elongation at break and toughness also showed 14 and 125% improvements, respectively. Finally, the effects of GNP-POSS content on the morphological, quasistatic tensile, and high-strain-rate dynamic behavior of the PU/GNP-POSS nanocomposite films were also investigated. Overall, the tests performed using a split-Hopkinson pressure bar setup revealed a large increase in the film strength (from 147.6 for the neat PU film to 199 MPa for the PU/GNP-POSS film) and a marginal increase in the energy density of the film (38.1-40.8 kJ/m3). These findings support the suitability of the PU/GNP-POSS nanocomposite films for force protection applications.
Collapse
Affiliation(s)
- Mohammad Mansourian-Tabaei
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
| | - Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
| | - Damian L Stoddard
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
- Department of Mechanical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Rooban V K G Thirumalai
- Institute for Imaging and Analytical Technologies, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mine G Ucak-Astarlioglu
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180-6199, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
- Department of Civil Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Cui X, Guo J, Araby S, Abbassi F, Zhang C, Diaby AL, Meng Q. Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. NANOTECHNOLOGY 2022; 33:415701. [PMID: 35732160 DOI: 10.1088/1361-6528/ac7b35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, a flexible porous polyvinyl alcohol (PVA)/graphene oxide (GO) composite film was developed and tested for flexible strain sensing and energy-storage applications. Morphology and mechanical properties were studied; tensile strength and Young's modulus increased by 225% and 86.88%, respectively, at 0.5 wt% GO. The PVA/GO film possesses exceptional sensing ability to various mechanical strains, such as tension, compression, bending, and torsion. For example, the gauge factor of the PVA/GO film as a tensile-strain sensor was measured as 2.46 (246%). Under compression loads, the PVA/GO composite film showed piezoresistive and capacitive strain-sensing characteristics. Under 5 kPa of compression load, the relative resistance increased by 81% with a 100 msec response time; the relative capacitance increased by 160% with a 120 msec response time. The PVA/GO strain sensor exhibited high durability and reliability over 20 × 103cycles of tensile strain and bending at 3.33 Hz. Moreover, the PVA/GO composite film showed good electrochemical properties due to its porous structure; the maximum capacitance was 124.7 F g-1at 0.5 wt% GO. After 20 × 103charging-discharging cycles, the capacitance retention rate was 94.45%, representing high stable capacitance performance. The results show that electrically conductive porous PVA nanocomposite films are promising candidates for strain sensing and energy-storage devices.
Collapse
Affiliation(s)
- Xu Cui
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Jia Guo
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Sherif Araby
- Department of Mechanical and Aerospace Engineering, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- Department of Mechanical Engineering, Faculty of Engineering, Benha University, Benha, Egypt
| | - Fethi Abbassi
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Chunyan Zhang
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | | | - Qingshi Meng
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| |
Collapse
|
3
|
Zhou J, Zhong X, Nag A, Liu Y, Takada K, Kaneko T. Reinforcement of ultrahigh thermoresistant polybenzimidazole films by hard craters. Polym Chem 2022. [DOI: 10.1039/d2py00548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrahigh thermoresistant polybenzimidazole films with uniform pores and hard craters on the surface were prepared by a silica template method. The pore and crater formation enhanced elongation and Young's modulus.
Collapse
Affiliation(s)
- Jiabei Zhou
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Xianzhu Zhong
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Aniruddha Nag
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Yang Liu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Kenji Takada
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|