1
|
Gui L, Huang R, Liang H, Wang Y, Sun W, Li L, Teng X. Antenna effect-modulated luminescent lanthanide complexes for biological sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126239. [PMID: 40252536 DOI: 10.1016/j.saa.2025.126239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
With the discovery and further exploitation of the antenna effect, the optical properties of luminescent lanthanide complexes (LLCs) have been greatly improved. Antenna effect-modulated LLCs exhibit long luminescence lifetimes, large Stokes shifts, narrow emission spectra, pure chromaticity, and high photostability. Meanwhile, LLCs have garnered considerable attention in recent years and are widely used as biosensors in the fields of food safety, environmental monitoring, clinical diagnosis, and drug analysis. In this review, we first systematically review the design of antenna effect-modulated LLC sensors, including the construction principle of antenna effect in LLCs and the selection of antenna ligands. Secondly, the classification of antenna ligands was discussed in detail. Thirdly, biological sensing applications of antenna effect-modulated LLCs in the past three years are described in terms of the role of LLCs in fluorescence sensors and electrochemiluminescence sensors. Finally, we also discussed the challenges and emerging opportunities of antenna effect-modulated LLCs in future sensing applications.
Collapse
Affiliation(s)
- Lingyan Gui
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Rongxian Huang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Huichun Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Yiting Wang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Wanyu Sun
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China.
| | - Xu Teng
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China.
| |
Collapse
|
2
|
Zheng L, Zhang J, Gao J, He F, Yang S, He H, Dramou P, Xiao D. Ratiometric fluorescence sensor based on bimetallic organic frameworks for anthrax biomarker detection. Biosens Bioelectron 2025; 278:117279. [PMID: 40023070 DOI: 10.1016/j.bios.2025.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
It is of great significance to construct ratiometric fluorescence sensors with simple operation and desirable anti-interference ability. In this study, a bimetallic organic framework was prepared for the first time by a one-pot solvothermal method, using 4,4'-biphenyl dicarboxylic acid as ligand, lanthanide metal terbium ions (Tb3+) and transition metal zirconium ions (Zr4+) as central metal ions. This preparation method was easy to carry out. On this basis, a novel ratiometric fluorescence sensor Tb-Zr-MOF was constructed successfully for the detection of anthrax biomarker (2,6-pyridinedicarboxylic acid (DPA)). When DPA was added into the detection system, the fluorescence of Tb3+ was enhanced due to the energy transfer from DPA to Tb3+. Therefore, under the single excitation at 285 nm, the fluorescence emission intensity of Tb-Zr-MOF at 402 nm remained unchanged and the fluorescence emission intensity at 546 nm increased. As a ratiometric fluorescence sensor, Tb-Zr-MOF showed good linear response to DPA in the range of 5∼100 μM and the limit of detection was 1.72 μM. This sensor reduces the interference of environmental factors and achieves high sensitivity detection, which is superior to the traditional single emission peak fluorescence sensor. In addition, the developed Tb-Zr-MOF sensor was used to detect DPA in Bauhinia bark samples successfully. The recovery rate was 98.80%∼104.8%, which proved the practical application of Tb-Zr-MOF in complex environment. It is expected to provide a reliable method for the detection of biomarkers of Bacillus anthracis.
Collapse
Affiliation(s)
- Limin Zheng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiarong Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jie Gao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Fusheng He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqian Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Yang S, Lin J, Wang S, Wu X, Schipper D, Yang X. Qualitative and Quantitative Luminescence Detection of 2,6-Dipicolinic Acid and Levofloxacin Based on a High-Nuclearity Eu(III) Nanomolecular Sensor. Anal Chem 2024. [PMID: 39556047 DOI: 10.1021/acs.analchem.4c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Rapid and accurate testing of 2,6-dipicolinic acid (DPA) and levofloxacin (LFX) has been attracting much attention due to the fact that the former is an important biomarker of anthrax spores and the latter is a third-generation fluoroquinolone drug and has been recognized as an important environmental pollutant. Herein, we report the preparation of a 13-metal Eu(III) nanomolecular sensor (molecular sizes: 2.0 × 2.4 × 3.2 nm) bearing a new flexible Schiff base ligand for luminescence testing of DPA and LFX with high selectivity and sensitivity. The rapid enhancement of the Eu(III) luminescence of 1 caused by DPA and LFX is expressed by fitting equation I615nm = k × [C] + a, which can be used to quantitatively detect DPA and LFX concentrations in CH3CN, fetal calf serum (FCS), and a real drug. The response times of 1 to DPA and LFX are less than ten seconds, with detection limits as low as 3.78 × 10-2 to 2.71 nM. The test strips containing 1, as well as 1@SA films, can be used to qualitatively detect DPA and LFX by the color changes under the irradiation of UV light.
Collapse
Affiliation(s)
- Shimin Yang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiazhao Lin
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shiqing Wang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Desmond Schipper
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street - A5300, Austin, Texas 78712-1224, United States
| | - Xiaoping Yang
- Zhejiang Key Laboratory of Carbon Materials, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Zhang C, Wu Y, Hong X, Lei W, Xia M, Wang F. Double-emitting lanthanide metal-organic frameworks composed of Eu/Tb doping and ratiometric fluorescence detection of nitrofurazone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123326. [PMID: 37683436 DOI: 10.1016/j.saa.2023.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Lanthanide metal-organic frameworks (LnMOFs) have substantial potential in luminescence due to their unique antenna effect. Nevertheless, the single emission is susceptible to pseudo-signals caused by external environmental conditions, which significantly threaten the accurate measurement of the concentration. In this case, we prepared a dual-emission fluorescent probe {EuxTb1-x(NH2-BDC)3(DMF)4·2DMF}∞ (NH2-BDC = Diaminoterephthalic acid, DMF = N,N-dimethylformamide). The stable dual-emission signal provides a superior signal output for detecting nitrofurazone (NFZ), which is detected by the probe with excellent fluorescence for 0-10 μM NFZ. In the investigation of the detection mechanism, it is speculated that NFZ incorporates with probe to generate a novel complex. Furthermore, The UV absorption curves of the novel complexes and NFZ overlap extensively with those of the probe. The addition of NFZ attenuates the characteristic luminescence of Eu and Tb by competing for the absorption of the excitation light of the probe. The probe has exhibits rapid response, excellent sensitivity, visual detection and a meagre detection limit (LOD = 0.013 μM) for the detection of NFZ. This work not only broadens the application of LnMOFs in the field of ratiometric detection but also provides a favorable fluorescent probe for the quantitative detection of NFZ.
Collapse
Affiliation(s)
- Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianyong Hong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Deng X, Zhu L, Zhang H, Li L, Zhao N, Wang J, Osman SM, Luque R, Chen BH. Highly efficient and stable catalysts-covalent organic framework-supported palladium particles for 4-nitrophenol catalytic hydrogenation. ENVIRONMENTAL RESEARCH 2022; 214:114027. [PMID: 35988829 DOI: 10.1016/j.envres.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
A covalent organic framework (COF) was used as the support of the catalyst in this work in order to obtain an environmentally friendly catalyst with high catalytic performance, selectivity and stability for 4-nitrophenol hydrogenation. Pd tiny particles are fixed in the cavity of COF to obtain Pd/COF catalysts, which has a quite narrow particle size distribution (5.09 ± 1.30 nm). As-prepared Pd/COF catalysts (Pd loading-2.11 wt%) shows excellent catalytic performance (conversion - 99.3%, selectivity >99.0% and turnover frequency (TOF)-989.4 h-1) for 4-nitrophenol hydrogenation under relatively mild reaction conditions of reaction temperature-40 °C and reaction pressure-3.0 MPa H2, and Pd/COF catalysts have high stability. Pd/COF catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscope (TEM), high resolution TEM (HRTEM), Brunauer-Emmett-Teller (BET), scanning TEM energy-dispersive X-ray spectroscopy (STEM-EDS) elemental analysis techniques to prove that the Pd nanoparticles are highly dispersed on the COF. Pd/COF catalysts have good stability and reusability hence with certain industrial application value.
Collapse
Affiliation(s)
- Xin Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China
| | - Lihua Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China; Guangdong Provincial Key Lab of Green Chemical Product Technology, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510640, China.
| | - Huan Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China
| | - Liqing Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China.
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Jiexiang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV, Km 396, E14071, Córdoba, Spain.
| | - Bing Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
7
|
Xu X, Yan B. The postsynthetic renaissance of luminescent lanthanide ions on crystalline porous organic framework materials. CrystEngComm 2022. [DOI: 10.1039/d2ce00880g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline porous organic framework materials (CPOFs), such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen bonded organic frameworks (HOFs) have received extensive attentions due to...
Collapse
|