1
|
Sim H, Kang SW. Innovative eco-friendly hydroxyethylcellulose matrix-based composite for enhanced gas separation: Insights from performance and structural characterization. Int J Biol Macromol 2024; 271:132576. [PMID: 38788883 DOI: 10.1016/j.ijbiomac.2024.132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
With increasing concern for the environment, the demand for carbon dioxide separation, a key contributor to global warming, has escalated. Therefore, this paper focuses on carbon dioxide separation by creating an hydroxyethyl cellulose (HEC)(C2H6O2)x*(C6H7O2(OH)3)n/silver tetra fluoroborate (AgBF4)/aluminum nitrate (Al(NO3)3) composite film, demonstrating excellent separation performance with a permeance of 1.0 GPU and a selectivity of 100. Silver ions enhance the solubility of carbon dioxide, aiding in its separation, and we determined the optimal aluminum composition to stabilize the silver ions. To analyze this, we examined the cross-sections using SEM, confirming a selective layer of 1.7 μm for carbon dioxide separation. Furthermore, TGA, FT-IR, and NMR analyses were conducted to investigate the interaction between the polymer and additives. This revealed that the increased polymer chain due to the interaction between Ag and HEC, along with stabilized Ag facilitated by the addition of Al, maximized the interaction with carbon dioxide via the empty s-orbital. Additionally, SEM-EDX, UV-vis, XRD, XPS analyses were employed to elucidate the movement of ions within the membrane. These results provide insights into the performance of membranes based on cellulose polymer and offer valuable insights for future applications in gas separation technologies.
Collapse
Affiliation(s)
- Hyojeong Sim
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
2
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
3
|
Lee J, Kang S. CuO Modified by 7,7,8,8-Tetracyanoquinodimethane and Its Application to CO 2 Separation. Int J Mol Sci 2022; 23:ijms232314583. [PMID: 36498909 PMCID: PMC9738571 DOI: 10.3390/ijms232314583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
7,7,8,8-Tetracyanoquinomethane (TCNQ) was added to polyvinylpyrrolidone (PVP)/CuO composites to modify and prevent agglomeration of the particles, and thus the CuO particles were well dispersed to a small size, thereby increasing CO2 solubility and separation performance. When the separation performance of the PVP/CuO/TCNQ composite membrane was measured for CO2/N2 gases, a CO2 separation of about 174 was measured. This improvement in performance was attributed to the fact that TCNQ was applied to PVP and CuO to prevent agglomeration between particles with surface modification. Due to TCNQ, CuO could be dispersed to a small size in PVP; the bonds between chains in PVP weakened; the interaction between molecules weakened; and the free volume increased, as confirmed by FT-IR, TGA, and UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Juyeong Lee
- Department of Chemical Engineering and Material Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sangwook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
- Correspondence: ; Tel.: +82-2-2287-5362
| |
Collapse
|