1
|
Rawindran H, Arif Bin Hut N, Vrasna DK, Goh PS, Lim JW, Liew CS, Ho CD, Kang HS, Shahid MK, Ng HS, Habila MA, Khoo KS. Ultrafiltration membrane fabricated from polyethylene terephthalate plastic waste for treating microalgal wastewater and reusing for microalgal cultivation. CHEMOSPHERE 2024; 346:140591. [PMID: 37918531 DOI: 10.1016/j.chemosphere.2023.140591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Nur Arif Bin Hut
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Dhita Karunia Vrasna
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India.
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, 251301, Taiwan
| | - Hooi-Siang Kang
- Marine Technology Center, Institute for Vehicle System & Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Fan X, Zhang P, Fan M, Jiang P, Leng Y. Effect of Glutaraldehyde Multipoint Covalent Treatments on Immobilized Lipase for Hydrolysis of Acidified Oil. Appl Biochem Biotechnol 2023; 195:6942-6958. [PMID: 36951940 DOI: 10.1007/s12010-023-04477-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Immobilized lipase is a green and sustainable catalyst for hydrolysis of acidified oil. Glutaraldehyde is widely used for lipase immobilization while the appropriate strategy optimizes the catalytic performance of lipase. In this research, lipase from Candida rugosa (CRL) was immobilized on spherical silica (SiO2) by glutaraldehyde multipoint covalent treatments, including covalent binding method and adsorption-crosslinking method. The enzymatic stability properties and performance in hydrolysis of refined oil and acidified oil were studied. We confirmed that the residual activity decreased while the stability increased because of the influence on secondary structure of lipase after multipoint covalent treatments. In the comparison of different immobilization strategies in multipoint covalent treatment, SiO2-CRL (covalent binding method) showed lower loading capacity than SiO2-CRL (adsorption-crosslinking method), resulting in low activity. However, SiO2-CRL (covalent binding method) showed better reusability and stability. Immobilized lipase via covalent binding method was more potential in the application of catalytic hydrolysis of acidified oils.
Collapse
Affiliation(s)
- Xiulin Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
3
|
Luo Q, Wang K, Yang Y, Tian X, Wang R, He B. Continuous biodiesel production from acidic oil using a combination of acidic and alkaline composite catalytic membranes in flow-through membrane reactors. NEW J CHEM 2023. [DOI: 10.1039/d2nj03412c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A comprehensive process of esterification for online separation transesterification for biodiesel production, with a yield of up to 97.52%.
Collapse
Affiliation(s)
- Qingliang Luo
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Kangkang Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi Yang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xin Tian
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|