1
|
Abbas MF, Karim DK, Kareem HR, Kamil MM, Al-Musawi MH, Asker MH, Ghanami M, Shahriari-Khalaji M, Sattar M, Mirhaj M, Sharifianjazi F, Tavamaishvili K, Mohabbatkhah M, Soheily A, Noory P, Tavakoli M. Fucoidan and its derivatives: From extraction to cutting-edge biomedical applications. Carbohydr Polym 2025; 357:123468. [PMID: 40158992 DOI: 10.1016/j.carbpol.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Fucoidan, a sulfated polymeric carbohydrate isolated from various marine brown algae, has attracted the interest of biomedical scientists because of its unique structural features and extensive spectrum of biological activity. This review encompasses a comprehensive insight into fucoidan's extraction procedures, cross-linking strategies, chemical modifications, and biomedical applications. Advanced extraction methods, such as microwave-assisted and enzyme-assisted extraction, are emphasized to get high-quality fucoidan that has augmented bioactivity. Moreover, the production and role of fucoidan-based materials in drug delivery systems are investigated, with a focus on their potential for targeted therapies. The study also explores the strategies to improve fucoidan's bioavailability and mechanical properties via structural modifications, such as Sulfation, desulfation, methylation, benzoylation, sulfation, amination, acetylation and phosphorylation, and cross-linking with other polymers to form films, hydrogels, and nanocomposites. In addition, fucoidan's applications in drug delivery systems, tissue engineering, microneedles, and 3D bioprinting are discussed. By summarizing current research findings, this study seeks to comprehend the mechanisms underpinning fucoidan's therapeutic efficacy and its potential to develop robust biomaterials.
Collapse
Affiliation(s)
- Marwa F Abbas
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Dhuha K Karim
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Huda Raad Kareem
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mohammed Hayder Asker
- Department of pharmacology and toxicology, college of pharmacy, Mustansiriyah University Baghdad, Iraq.
| | - Maral Ghanami
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | | | - Mamoona Sattar
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia; Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi 0160, Georgia.
| | - Mehdi Mohabbatkhah
- Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ali Soheily
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
2
|
Lagrange J, Van De Velde G, Lacolley P, Regnault V, Bascetin R. Underestimated role of macromolecular crowding in bioengineered in vitro models of health and diseases. Mater Today Bio 2025; 32:101772. [PMID: 40331149 PMCID: PMC12053638 DOI: 10.1016/j.mtbio.2025.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Macromolecular crowding (MMC) is a ubiquitous phenomenon in biological systems that is largely overlooked in bioengineered in vitro cellular models. This comprehensive review examines the significant impact of both intracellular and extracellular MMC on cellular and molecular processes under physiological and pathological conditions. By synthesizing current knowledge and identifying critical gaps in our understanding of MMC, this review highlights the need to incorporate crowding into the development of in vitro models for studying health and diseases, as well as for drug discovery platforms. The pervasive nature of MMC in biological systems underscores its potential importance in various physiological and pathological processes, including protein aggregation disorders, cancer, and vascular diseases. Recognizing the ubiquitous influence of MMC could open new avenues for therapeutic interventions and deepen our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Jérémy Lagrange
- Université de Lorraine, Inserm, DCAC, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Inserm, IHU INFINY, F-54000, Nancy, France
| | | | | | | | | |
Collapse
|
3
|
Hu J, Li C, Yang Z, Wu Q, Wang J, Xu Z, Chen Y, Wan Q, Shuai Y, Yang S, Yang M. Hierarchically patterned protein scaffolds with nano-fibrillar and micro-lamellar structures modulate neural stem cell homing and promote neuronal differentiation. Biomater Sci 2023; 11:7663-7677. [PMID: 37855269 DOI: 10.1039/d3bm00801k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Biophysical factors are essential in cell survival and behaviors, but constructing a suitable 3D microenvironment for the recruitment of stem cells and exerting their physiological functions remain a daunting challenge. Here, we present a novel silk fibroin (SF)-based fabrication strategy to develop hierarchical microchannel scaffolds for biomimetic nerve microenvironments in vitro. We first modulated the formation of SF nanofibers (SFNFs) that mimic the nanostructures of the native extracellular matrix (ECM) by using graphene oxide (GO) nanosheets as templates. Then, SFNF-GO systems were shaped into 3D porous scaffolds with aligned micro-lamellar structures by freeze-casting. The interconnected microchannels successfully induced cell infiltration and migration to the SFNF-GO scaffolds' interior. Meanwhile, the nano-fibrillar structures and the GO component significantly induced neural stem cells (NSCs) to differentiate into neurons within a short timeframe of 14 d. Importantly, these 3D hierarchical scaffolds induced a mild inflammatory response, extensive cell recruitment, and effective stimulation of NSC neuronal differentiation when implanted in vivo. Therefore, these SFNF-GO lamellar scaffolds with distinctive nano-/micro-topographies hold promise in the fields of nerve injury repair and regenerative medicine.
Collapse
Affiliation(s)
- Jiaqi Hu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chenlin Li
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhangze Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qi Wu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zongpu Xu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yuyin Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Quan Wan
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Hangzhou, 310016, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
4
|
Cheng Q, Zhang L, Zhang J, Zhou X, Wu B, Wang D, Wei T, Shafiq M, Li S, Zhi D, Guan Y, Wang K, Kong D. Decellularized Scaffolds with Double-Layer Aligned Microchannels Induce the Oriented Growth of Bladder Smooth Muscle Cells: Toward Urethral and Ureteral Reconstruction. Adv Healthc Mater 2023; 12:e2300544. [PMID: 37638600 DOI: 10.1002/adhm.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/29/2023]
Abstract
There is a great clinical need for regenerating urinary tissue. Native urethras and ureters have bidirectional aligned smooth muscle cells (SMCs) layers, which plays a pivotal role in micturition and transporting urine and inhibiting reflux. Thus far, urinary scaffolds have not been designed to induce the native-mimicking aligned arrangement of SMCs. In this study, a tubular decellularized extracellular matrix (dECM) with an intact internal layer and bidirectional aligned microchannels in the tubular wall, which is realized by the subcutaneous implantation of a template, followed by the removal of the template, and decellularization, is engineered. The dense and intact internal layer effectively increases the leakage pressure of the tubular dECM scaffolds. Rat-derived dECM scaffolds with three different sizes of microchannels are fabricated by tailoring the fiber diameter of the templates. The rat-derived dECM scaffolds exhibiting microchannels of ≈65 µm show suitable mechanical properties, good ability to induce the bidirectional alignment and growth of human bladder SMCs, and elevated higher functional protein expression in vitro. These data indicate that rat-derived tubular dECM scaffolds manifesting double-layer aligned microchannels may be promising candidates to induce the native-mimicking regeneration of SMCs in urethra and ureter reconstruction.
Collapse
Affiliation(s)
- Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linli Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Boyu Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dezheng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shengbin Li
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Fok SW, Gresham RCH, Ryan W, Osipov B, Bahney C, Leach JK. Macromolecular crowding and decellularization method increase the growth factor binding potential of cell-secreted extracellular matrices. Front Bioeng Biotechnol 2023; 11:1091157. [PMID: 36756385 PMCID: PMC9899907 DOI: 10.3389/fbioe.2023.1091157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Recombinant growth factors are used in tissue engineering to stimulate cell proliferation, migration, and differentiation. Conventional methods of growth factor delivery for therapeutic applications employ large amounts of these bioactive cues. Effective, localized growth factor release is essential to reduce the required dose and potential deleterious effects. The endogenous extracellular matrix (ECM) sequesters native growth factors through its negatively charged sulfated glycosaminoglycans. Mesenchymal stromal cells secrete an instructive extracellular matrix that can be tuned by varying culture and decellularization methods. In this study, mesenchymal stromal cell-secreted extracellular matrix was modified using λ-carrageenan as a macromolecular crowding (MMC) agent and decellularized with DNase as an alternative to previous decellularized extracellular matrices (dECM) to improve growth factor retention. Macromolecular crowding decellularized extracellular matrix contained 7.7-fold more sulfated glycosaminoglycans and 11.7-fold more total protein than decellularized extracellular matrix, with no significant difference in residual DNA. Endogenous BMP-2 was retained in macromolecular crowding decellularized extracellular matrix, whereas BMP-2 was not detected in other extracellular matrices. When implanted in a murine muscle pouch, we observed increased mineralized tissue formation with BMP-2-adsorbed macromolecular crowding decellularized extracellular matrix in vivo compared to conventional decellularized extracellular matrix. This study demonstrates the importance of decellularization method to retain endogenous sulfated glycosaminoglycans in decellularized extracellular matrix and highlights the utility of macromolecular crowding to upregulate sulfated glycosaminoglycan content. This platform has the potential to aid in the delivery of lower doses of BMP-2 or other heparin-binding growth factors in a tunable manner.
Collapse
Affiliation(s)
- Shierly W. Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, United States
| | - Robert C. H. Gresham
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, United States
| | - Weston Ryan
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, United States
| | - Benjamin Osipov
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, United States
| | - Chelsea Bahney
- Steadman Philippon Research Institute, Vail, CO, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, United States,Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States,*Correspondence: J. Kent Leach,
| |
Collapse
|
6
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
7
|
Kandel R, Rim Jang S, Ghimire U, Shrestha S, Kumar Shrestha B, Hee Park C, Sang Kim C. Engineered nanostructure fibrous cell-laden biointerfaces integrating Fe3O4/SrO2-fMWCNTs induce osteogenesis and anti-bacterial effect. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Curcumin-laden ECM-mimicking microfibers assemble with mesenchymal stem cells to generate heterospheroids and enhance cell viability and function. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Li C, Zhang X, Dong M, Han X. Progress on Crowding Effect in Cell-like Structures. MEMBRANES 2022; 12:593. [PMID: 35736300 PMCID: PMC9228500 DOI: 10.3390/membranes12060593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Several biological macromolecules, such as proteins, nucleic acids, and polysaccharides, occupy about 30% of the space in cells, resulting in a crowded macromolecule environment. The crowding effect within cells exerts an impact on the functions of biological components, the assembly behavior of biomacromolecules, and the thermodynamics and kinetics of metabolic reactions. Cell-like structures provide confined and independent compartments for studying the working mechanisms of cells, which can be used to study the physiological functions arising from the crowding effect of macromolecules in cells. This article mainly summarizes the progress of research on the macromolecular crowding effects in cell-like structures. It includes the effects of this crowding on actin assembly behavior, tubulin aggregation behavior, and gene expression. The challenges and future trends in this field are presented at the end of the paper.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| |
Collapse
|
10
|
Mohan H, Karthi N, Sathya PM, Ramalingam V, Thimmarayan S, Hossain MA, Aravinthan A, Shin T. (Zn, Ni)-ferrite nanoparticles for promoted osteogenic differentiation of MC3T3-E1 cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|