1
|
Chen M, Ren M, Zhu M, Zhang H, Chen T, Zhang Y, Yang S. Effect of degree of polymerization on regenerated cellulose ultrafiltration membrane performance through ZnCl 2/AlCl 3 aqueous solvent system. Carbohydr Polym 2024; 345:122557. [PMID: 39227096 DOI: 10.1016/j.carbpol.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
The development of a direct method for preparing regenerated cellulose (RC) ultrafiltration membranes from cellulose is urgently needed. In this study, refined cotton was used as the raw material to successfully prepare RC ultrafiltration membranes at room temperature using a ZnCl2/AlCl3 solvent system combined with a nonsolvent-induced phase separation (NIPS) method. This solvent system effectively degrades cellulose, producing RC ultrafiltration membranes with varying degrees of polymerization (DP). The research results indicate that reducing the DP of cellulose significantly decreases the viscosity of the solution, facilitating the formation of an asymmetric, finger-like pore structures in the membrane. Furthermore, a decrease in DP slightly enlarges the surface pore size and significantly thickens the dense layer. At a DP of 250, the water flux of the DP250-ET membrane reached 630 L·m-2·h-1·bar-1, with a molecular weight cut-off (MWCO) of ~300 kDa, enabling efficient separation of viruses (LRV > 3.91) and IgG. The exposure of more hydroxy groups on the RC enhances the membrane's hydrophilicity, indicated by a water contact angle (WCA) of 39.5°. Compared to commercial polyethersulfone (PES) membranes, the DP250-ET membrane exhibited lower protein adsorption and excellent anti-fouling performance in practical applications (FRR > 80 %). Overall, this work confirms the significant potential of the eco-friendly ZnCl2/AlCl3 solvent system in the fabrication of RC ultrafiltration membranes, where the structure and performance of the membrane can be tailored by adjusting the DP of cellulose.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyu Ren
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Manyao Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichuan Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianya Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yong Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China
| | - Shujuan Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China
| |
Collapse
|
2
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
3
|
Usman J, Abba SI, Baig N, Abu-Zahra N, Hasan SW, Aljundi IH. Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH 2) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16271-16289. [PMID: 38514254 DOI: 10.1021/acsami.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2-CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2-CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2-CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.
Collapse
Affiliation(s)
- Jamilu Usman
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nidal Abu-Zahra
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53201, United States
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Isam H Aljundi
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Avornyo A, Chrysikopoulos CV. Applications of graphene oxide (GO) in oily wastewater treatment: Recent developments, challenges, and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120178. [PMID: 38310795 DOI: 10.1016/j.jenvman.2024.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The treatment of oily wastewater has become a serious environmental challenge, for which graphene oxide has emerged as a promising material in solving the problem. The ever-growing utilization of graphene oxide (GO) in the treatment of oily wastewater necessitates a constant review. This review article employs a comprehensive literature survey methodology, systematically examining peer-reviewed articles, focusing on, but not entirely limited to, the last five years. Major databases such as EBSCOhost, Scopus, ScienceDirect, Web of Science and Google Scholar were searched using specific keywords related to GO and oily wastewater treatment. The inclusion criteria focused on studies that specifically address the application, efficiency, and mechanisms of GO in treating oily wastewater. The data extracted from these sources were then synthesized to highlight the most important developments, challenges, and prospects in this field. As far as oily wastewater treatment is concerned, the majority of the studies revolve around the use of GO in mitigating fouling in membrane processes, improving the stability, capacity and reusability of sorbents, and enhancing photodegradation by minimizing charge recombination.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Constantinos V Chrysikopoulos
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
5
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Myeong J, Deshmukh P, Gyu Shin W. Facile preparation of superhydrophilic and underwater superoleophobic stainless steel mesh for oil-water separation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Mahdavi H, Hosseini F. Fabrication of high-performance mixed matrix blend membranes comprising PES and TPU reinforced with APTS functionalized-graphene oxide via VIPS-NIPS technique for aqueous dye treatment and antifouling properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Mahdavi H, Hosseini F, Ghanbari R. Incorporation of MIL-101(Fe)/Tannic acid-PEG to PES-TPU blend membrane to modify a membrane with riveting mechanical stability and separation performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Baig N, Alowaid AM, Abdulazeez I, Salhi B, Sajid M, Kammakakam I. Designing of nanotextured inorganic-organic hybrid PVDF membrane for efficient separation of the oil-in-water emulsions. CHEMOSPHERE 2022; 308:136531. [PMID: 36150483 DOI: 10.1016/j.chemosphere.2022.136531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The separation of the emulsified oil/water is one of the critical environmental challenges. The PVDF membranes have been found helpful for separation, but rapid fouling makes them less attractive in treating oil-in-water emulsions. The design of antifouling membranes has become an area of deep interest. Herein, developing a novel modified PVDF ultrafiltration membrane was reported by doping the pyrrole and solidifying it in a ferric-containing coagulation bath, resulting in a unique nanotextured PVDF membrane (CCB-Fe/PPnp-PVDF) to separate the oil/water emulsions. The resultant CCB-Fe/PPnp-PVDF membrane was thoroughly characterized using the FTIR, FE-SEM, EDX, mapping, AFM, and contact analyzer. The hydrophilicity of the CCB-Fe/PPnp-PVDF was substantially improved, and the water contact angle was reduced from 81֯ ± 0.9֯ to 44֯ ± 1.7֯. The CCB-Fe/PPnp-PVDF membrane flux increased by 121% compared to the pristine PVDF membrane, with high separation efficiency of 99%. The hydrophilic nanotextured surface of the CCB-Fe/PPnp-PVDF membrane showed good antifouling behavior, with a flux recovery ratio (FRR) of more than 96%. Irreversible flux was just less than 4%. The high flux recovery ratio indicated that the nanotextured surface produced by the Fe/PPnp had prevented the blockage of the membrane pores and compact cake layer formation, which makes it an excellent membrane for oil/water emulsion separation. This strategy can be adopted for designing advanced membranes for separation applications.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdulaziz Mohammed Alowaid
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Pakhira M, Ghosh S, Ghosh S, Chatterjee DP, Nandi AK. Development of poly(vinylidene fluoride) graft random copolymer membrane for antifouling and antimicrobial applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|