1
|
Komatsu S, Koh R, Yamaguchi H, Hitachi K, Tsuchida K. Protein-Based Mechanism of Wheat Growth Under Salt Stress in Seeds Irradiated with Millimeter Waves. Int J Mol Sci 2024; 26:253. [PMID: 39796108 PMCID: PMC11720253 DOI: 10.3390/ijms26010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.6% of the control level under salt stress, was recovered to the control level by MMW irradiation. To reveal the salt-stress tolerance mechanism of MMW irradiation on wheat, a proteomic analysis was conducted. Proteins related to cell cycle, proliferation, and transport in biological processes, as well as proteins related to the nucleus, cytoskeleton, and cytoplasm within cellular components, were inversely correlated with the number of proteins. The results of the proteomic analysis were verified by immunoblot and other analyses. Among the proteins related to the scavenging reactive-oxygen species, superoxide dismutase and glutathione reductase accumulated under salt stress and further increased in the MMW-irradiated wheat. Among pathogen-related proteins, pathogenesis-related protein 1 and the Bowman-Birk proteinase inhibitor decreased under salt stress and recovered to the control level in the MMW-irradiated wheat. The present results indicate that MMW irradiation of wheat seeds improves plant-growth recovery from salt stress through regulating the reactive oxygen species-scavenging system and the pathogen-related proteins. These genes may contribute to the development of salt-stress-tolerant wheat through marker-assisted breeding and genome editing.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Rachel Koh
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| |
Collapse
|
2
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
3
|
Cui J, Xu C, Jin Z, Liu H, Hu R, Liu F. Visible light photocatalysis: efficient Z-scheme LaFeO 3/g-C 3N 4/ZnO photocatalyst for phenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96875-96890. [PMID: 37581730 DOI: 10.1007/s11356-023-29199-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
In this work, a Z-scheme LaFeO3/g-C3N4/ZnO heterojunction photocatalyst with large specific surface (68.758 m2/g) and low cost (0.00035 times the cost of per gram of Au) was easily synthesized by glucose-assisted hydrothermal method. The structure, surface morphology, and optical properties of the photocatalyst were investigated. The constructed Z-scheme heterojunction catalysts can enhance the visible light absorption and carrier separation efficiency. Among these photocatalysts, the 10%-LaFeO3/g-C3N4/ZnO composite possesses the premium performance for efficient degrading 97.43% of phenol within 120 min. Even after 5 cycles, it still sustains an excellent photocatalytic stability (92.13% phenol degradation). According to the XPS surface states and the capture of active species on LaFeO3/g-C3N4/ZnO, the electrons would be transferred from ZnO and LaFeO3 to g-C3N4. In addition, ·OH plays an important role in photocatalytic reactions for phenol degradation. Thus, the proposed possible photocatalytic reaction mechanism of Z-scheme LaFeO3/g-C3N4/ZnO can provide a more economical and efficient conception for phenol degradation.
Collapse
Affiliation(s)
- Jinggang Cui
- Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Chang Xu
- Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Zehua Jin
- School of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Hongwei Liu
- School of Environmental Science, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Ruisheng Hu
- Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Fenrong Liu
- Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
4
|
Dogmaz S, Cavas L. Biohydrogen production via green silver nanoparticles synthesized through biomass of Ulva lactuca bloom. BIORESOURCE TECHNOLOGY 2023; 379:129028. [PMID: 37030419 DOI: 10.1016/j.biortech.2023.129028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Ulva lactuca is a marine green seaweed. Its bloom based biomass accumulated in the İzmir bay and is collected by local authorities. In this investigation, an alternative solution was proposed to utilize the biomass of U. lactuca to produce biohydrogen via green synthesized silver nanoparticles. According to the results, the optimum conditions related to silver nanoparticle production such as pH, temperature, biomass concentration, silver nitrate concentrations, and incubation time were determined to be 11, 25 °C, 10 mg/mL, 4 mM, and 3 days, respectively. Effective conditions for biohydrogen production such as pH, temperature, agitation rate, and sodium borohydride concentration were found to be 7, 50 °C, 250 rpm and 150 mM, respectively. These parameters are also modelled with an artificial neural network. The data presented here provide recommendations for producing biohydrogen from waste algae and helping reduce carbon emissions for better environment and future.
Collapse
Affiliation(s)
- Sema Dogmaz
- Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Kaynaklar Campus, 35390, İzmir, Türkiye
| | - Levent Cavas
- Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Kaynaklar Campus, 35390, İzmir, Türkiye; Dokuz Eylül University, Faculty of Science, Department of Chemistry (Biochemistry Division), Kaynaklar Campus, 35390, İzmir, Türkiye.
| |
Collapse
|
5
|
Popova S, Tazetdinova V, Pavlova E, Matafonova G, Batoev V. Characteristics and Sonophotocatalytic Activity of Natural Sphalerite under Ultrasonic (1.7 MHz) and UVA LED (365 nm) Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5412. [PMID: 35955346 PMCID: PMC9369715 DOI: 10.3390/ma15155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Naturally occurring sono- and photoactive minerals, which are abundant on Earth, represent an attractive alternative to the synthesized sonophotocatalysts as cost-effective materials for water and wastewater treatment. This study focuses on characterizing and evaluating the sonophotocatalytic activity of natural sphalerite (NatS) from Dovatka deposit (Siberia) under high-frequency ultrasonic (US, 1.7 MHz) and ultraviolet light-emitting diodes (UVA LED, 365 nm) irradiation towards degradation of 4-chlorophenol as a model organic pollutant. Since raw natural sphalerite did not exhibit a measurable photocatalytic activity, it was calcined at 500, 900 and 1200 °C. The natural sphalerite after calcination at 900 °C (NatS*) was found to be the most effective for sonophotocatalytic degradation of 4-chlorophenol, attaining the highest efficiency (55%, 1 h exposure) in the following row: UV < US ≈ UV/US ≈ US/NatS* < UV/NatS* < UV/US/NatS*. Addition of 1 mM H2O2 increased the removal to 74% by UV/US/NatS*/H2O2 process. An additive effect between UV/NatS* and US/NatS* processes was observed in the sonophotocatalytic system as well as in the H2O2-assisted system. We assume that the sonophotocatalytic hybrid process, which is based on the simultaneous use of high-frequency ultrasound, UVA light, calcined natural sphalerite and H2O2, could provide a basis of an environmentally safe and cost-effective method of elimination of organic pollutants from aqueous media.
Collapse
Affiliation(s)
- Svetlana Popova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| | | | - Erzhena Pavlova
- Chemistry Department, Buryat State University, 670000 Ulan-Ude, Russia
| | - Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| |
Collapse
|
6
|
Saeed U, Jilani A, Iqbal J, Al-Turaif H. Reduced graphene oxide-assisted graphitic carbon nitride@ZnO rods for enhanced physical and photocatalytic degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Indoor Air Photocatalytic Decontamination by UV–Vis Activated CuS/SnO2/WO3 Heterostructure. Catalysts 2022. [DOI: 10.3390/catal12070728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A titania-free heterostructure based on CuS/SnO2/WO3 was obtained by a three-step sol–gel method followed by spray deposition on the glass substrate. The samples exhibit crystalline structures and homogenous composition. The WO3 single-component sample morphology consists of fibers that serve as the substrate for SnO2 development. The CuS/SnO2/WO3 heterostructure is characterized by a dense granular morphology. Photocatalytic activity was evaluated under UV–Vis radiation and indicates that the WO3 single-component sample is able to remove 41.1% of acetaldehyde (64.9 ppm) and 52.5% of formaldehyde (81.4 ppm). However, the CuS/SnO2/WO3 exhibits a superior photocatalytic activity due to a larger light spectrum absorption and lower charge carrier recombination rate, allowing the removal of 69.2% of acetaldehyde and 78.5% of formaldehyde. The reusability tests indicate that the samples have a stable photocatalytic activity after three cycle (12 h/cycle) assessments. During light irradiation, the heterostructure acted as a Z-scheme mechanism using the redox ability of the CuS conduction band electrons and the SnO2/WO3 valence band holes to generate the oxidative species required for VOC removal.
Collapse
|
8
|
Microwave Irradiation and Glutamic Acid-Assisted Phytotreatment of Tannery and Surgical Industrial Wastewater by Sorghum. Molecules 2022; 27:molecules27134004. [PMID: 35807251 PMCID: PMC9268057 DOI: 10.3390/molecules27134004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.
Collapse
|
9
|
TiO2–SnO2 Nanocomposites for Photocatalytic Environmental Remediation under UV-Light. METALS 2022. [DOI: 10.3390/met12050733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The photocatalytic removal of water contaminants for ecological systems has become essential in the past few decades. Consequently, for commercialization, cost-efficient, earth-abundant and easy to synthesize photocatalysts for dye degradation are of urgent need. We have demonstrated a simple and feasible approach for fabricating TiO2–SnO2 nanocomposite photocatalysts via urea-assisted-thermal-decomposition with different mass ratios. The as-synthesized materials were characterized by different physicochemical techniques. The phase formation and crystallite size were calculated by using XRD. The STEM, UV-Vis, DRS, HR-TEM and EDS revealed the effective formation of the heterojunction between TiO2 and SnO2, and enrichment in the UV-absorption spectrum. All synthesized materials were used for the photocatalytic degradation of methyl orange (MO) under UV light. The optimized results of the TiO2–SnO2 nanocomposite showed excellent photostability and photocatalytic activity over a number of degradation-reaction cycles of methyl-orange (MO) dye under the illumination of ultraviolet light. In addition, the recent method has great potential to be applied as a proficient method for mixed-metal-oxide-nanocomposite synthesis.
Collapse
|
10
|
Jilani A, Hussain SZ, Melaibari AA, Abu-Hamdeh NH. Development and Mechanistic Studies of Ternary Nanocomposites for Hydrogen Production from Water Splitting to Yield Sustainable/Green Energy and Environmental Remediation. Polymers (Basel) 2022; 14:polym14071290. [PMID: 35406164 PMCID: PMC9003420 DOI: 10.3390/polym14071290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Photocatalysts lead vitally to water purifications and decarbonise environment each by wastewater treatment and hydrogen (H2) production as a renewable energy source from water-photolysis. This work deals with the photocatalytic degradation of ciprofloxacin (CIP) and H2 production by novel silver-nanoparticle (AgNPs) based ternary-nanocomposites of thiolated reduce-graphene oxide graphitic carbon nitride (AgNPs-S-rGO2%@g-C3N4) material. Herein, the optimised balanced ratio of thiolated reduce-graphene oxide in prepared ternary-nanocomposites played matchlessly to enhance activity by increasing the charge carriers’ movements via slowing down charge-recombination ratios. Reduced graphene oxide (rGO), >2 wt.% or <2 wt.%, rendered H2 production by light-shielding effect. As a result, CIP degradation was enhanced to 95.90% by AgNPs-S-rGO2%@g-C3N4 under the optimised pH(6) and catalyst dosage(25 mg/L) irradiating beneath visible-light (450 nm, 150 watts) for 70 min. The chemical and morphological analysis of AgNPs-S-rGO2%@g-C3N4 surface also supported the possible role of thiolation for this enhancement, assisted by surface plasmon resonance of AgNPs having size < 10 nm. Therefore, AgNPs-S-rGO2%@g-C3N4 has 3772.5 μmolg−1 h−1 H2 production, which is 6.43-fold higher than g-C3N4 having cyclic stability of 96% even after four consecutive cycles. The proposed mechanism for AgNPs-S-rGO2%@g-C3N4 revealed that the photo-excited electrons in the conduction-band of g-C3N4 react with the adhered water moieties to generate H2.
Collapse
Affiliation(s)
- Asim Jilani
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: or ; Tel.: +966-599693297
| | - Syed Zajif Hussain
- Department of Chemistry & Chemical Engineering, SBA-School of Science & Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Ammar A. Melaibari
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nidal H. Abu-Hamdeh
- Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Research Excellence in Renewable Energy and Power System, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|