1
|
Duverger V, Sauvage C, Kobr M, Imhof MO. An efficient detection agent for the high throughput screening of recombinant manufacturing cell lines. J Immunol Methods 2013; 400-401:2-12. [PMID: 23994258 DOI: 10.1016/j.jim.2013.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
To ensure the selection of high producing recombinant cell lines, a number of screening processes were developed in the presence of detection agents. Here, CHO cell lines secreting recombinant antibodies were detected in semi-solid medium containing detection agents. The aim was to compare two protein A-derived detection agents to two commercial fluorescent antibodies directed against the Fc part of the antibody of interest: the protein A derived Z domain fused to the red fluorescent protein and protein A labelled with a fluorescent Dylight™ 488 dye. All of these agents were compatible with cell recovery and colony formation, and specifically detected colonies secreting recombinant antibodies. Optimisation of the concentration of the fluorescent protein A allowed the identification of a higher number of good producers. Thus these data demonstrate that fluorescently labelled protein A-derivatives can be used for the selection of high producer cells.
Collapse
Affiliation(s)
- Valérie Duverger
- Cell Sciences, MerckSerono SA, ZI B, CH-1809 Fenil-sur-Corsier, Switzerland.
| | | | | | | |
Collapse
|
2
|
Tumor-targeting Salmonella typhimurium, a natural tool for activation of prodrug 6MePdR and their combination therapy in murine melanoma model. Appl Microbiol Biotechnol 2012; 97:4393-401. [PMID: 22868826 DOI: 10.1007/s00253-012-4321-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The PNP/6-methylpurine 2'-deoxyriboside (6MePdR) system is an efficient gene-directed enzyme prodrug therapy system with significant antitumor activities. In this system, Escherichia coli purine nucleoside phosphorylase (ePNP) activates nontoxic 6MePdR into potent antitumor drug 6-methylpurine (6MeP). The Salmonella typhimurium PNP (sPNP) gene has a 96-% sequence homology in comparison with ePNP and also has the ability to convert 6MePdR to 6MeP. In this study, we used tumor-targeting S. typhimurium VNP20009 expressing endogenous PNP gene constitutively to activate 6MePdR and a combination treatment of bacteria and prodrug in B16F10 melanoma model. The conversion of 6MePdR to 6MeP by S. typhimurium was analyzed by HPLC and the enzyme activity of sPNP was confirmed by in vitro (tetrazolium-based colorimetric assay) MTT cytotoxicity assay. After systemic administration of VNP20009 to mice, the bacteria largely accumulated and specifically delivered endogenous sPNP in the tumor. In comparison with VNP20009 or 6MePdR treatment alone, combined administration of VNP20009 followed by 6MePdR treatment significantly delayed the growth of B16F10 tumor and increased the CD8(+) T-cell infiltration. In summary, our results demonstrated that the combination therapy of S. typhimurium and prodrug 6MePdR is a promising strategy for cancer therapy.
Collapse
|
3
|
Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. PLoS One 2012; 7:e31198. [PMID: 22299056 PMCID: PMC3267773 DOI: 10.1371/journal.pone.0031198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023] Open
Abstract
Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements.
Collapse
Affiliation(s)
- Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
| | - Chenguang Gong
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Zhu Zhuo
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JW); (ZH)
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
- * E-mail: (JW); (ZH)
| |
Collapse
|
4
|
Zhao Y, Tang J, Yao Q, Zhou Y, Zhao H, Zeng X, Shi J, Luo G, Xie X, Zhou S, Liu Z, Lu X, Lin D, Liu J. Fusion of EGFP and porcine α 1,3GT genes decrease GFP expression. ASIAN PAC J TROP MED 2010; 3:925-929. [DOI: 10.1016/s1995-7645(11)60001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Sakamoto T, Sawamoto S, Tanaka T, Fukuda H, Kondo A. Enzyme-Mediated Site-Specific Antibody−Protein Modification Using a ZZ Domain as a Linker. Bioconjug Chem 2010; 21:2227-33. [DOI: 10.1021/bc100206z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takayuki Sakamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shiori Sawamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideki Fukuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Tang JB, Yang HM, Song SL, Zhu P, Ji AG. Effect of Glycine and Triton X-100 on secretion and expression of ZZ–EGFP fusion protein. Food Chem 2008; 108:657-62. [DOI: 10.1016/j.foodchem.2007.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/01/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
7
|
Expression and secretion of recombinant ZZ-EGFP fusion protein by the methylotrophic yeast Pichia pastoris. Biotechnol Lett 2008; 30:1409-14. [PMID: 18415052 DOI: 10.1007/s10529-008-9714-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
We constructed a fusion protein ZZ-EGFP by fusing the ZZ domains of staphylococcal protein A (SpA) and enhanced green fluorescent protein (EGFP). ZZ-EGFP was secreted in the yeast, Pichia pastoris, with a hexahistidine tag. Its expression level was determined by measuring the fluorescence of EGFP. When the recombinant yeast cells in shake-flasks were induced with 0.5% methanol for 96 h, a maximum yield of 115 mg ZZ-EGFP/l was obtained. The resulting ZZ-EGFP fusion protein retained immunoglobulin G (IgG)-binding capacity and EGFP fluorescence. ZZ-EGFP was then used in immunofluorescence assays for detecting antinuclear antibodies (ANA); it produced a good signal that was comparable in its brightness and fluorescence pattern to that generated with fluorescein isothiocyanate (FITC)-labelled anti-human IgG. Thus, ZZ-EGFP showed great potential in immunological applications due to its ability to bind to various IgG from different animal sources.
Collapse
|
8
|
Rudenko NV, Sinegina LL, Arzhanov MA, Ksenzenko VN, Ivashina TV, Morenkov OS, Shaloiko LA, Vinokurov LM. Barnase-barstar high affinity interaction phenomenon as the base for the heterogenous bioluminescence pseudorabies virus' immunoassay. ACTA ACUST UNITED AC 2007; 70:605-11. [PMID: 17355894 DOI: 10.1016/j.jbbm.2007.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/28/2007] [Indexed: 11/22/2022]
Abstract
The effective new variant of "sandwich" bioluminescent enzyme immunoassay (BEIA) for the sensitive detection of glycoprotein B (gB) of pseudorabies virus (PrV) was presently developed. The high affinity interaction of barnase-barstar protein pair and photoprotein obelin as bioluminescent marker were for the first time successfully applied to BEIA development. Preliminary the two monoclonal antibodies, 11/5 and 34/2, were raised against gB for ELISA PrV detection. Presently we used the same immuno-"sandwich" principle for BEIA. To do this the two different bioconjugates were elaborated. Recombinant barnase was chemically conjugated with monoclonal anti-PrV's gB IgG, and also barstar was fused in frame to obelin. The characteristics of BEIA method have been compared to ELISA PrV detection. We have shown the proposed here gB-BEIA was 40-fold more sensitive as opposed to gB-ELISA test. The construction might have a broad promise in multiple potential immunological applications.
Collapse
Affiliation(s)
- Natalia V Rudenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 142290, Pushchino, Russia
| | | | | | | | | | | | | | | |
Collapse
|