1
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
2
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
3
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
Collins MG, Rogers NM, Jesudason S, Kireta S, Brealey J, Coates PT. Spontaneous glomerular mesangial lesions in common marmoset monkeys (Callithrix jacchus
): a benign non-progressive glomerulopathy. J Med Primatol 2014; 43:477-87. [DOI: 10.1111/jmp.12134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Michael G. Collins
- Central Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA Australia
- Transplant Immunology Laboratory; Basil Hetzel Institute for Medical Research; The Queen Elizabeth Hospital; Woodville SA Australia
- School of Medicine; University of Adelaide; Adelaide SA Australia
| | - Natasha M. Rogers
- Central Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA Australia
- Transplant Immunology Laboratory; Basil Hetzel Institute for Medical Research; The Queen Elizabeth Hospital; Woodville SA Australia
- Vascular Medicine Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Shilpanjali Jesudason
- Central Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA Australia
- Transplant Immunology Laboratory; Basil Hetzel Institute for Medical Research; The Queen Elizabeth Hospital; Woodville SA Australia
- School of Medicine; University of Adelaide; Adelaide SA Australia
| | - Svjetlana Kireta
- Central Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA Australia
- Transplant Immunology Laboratory; Basil Hetzel Institute for Medical Research; The Queen Elizabeth Hospital; Woodville SA Australia
| | - John Brealey
- Electron Microscopy Unit; SA Pathology; Adelaide SA Australia
| | - Patrick Toby Coates
- Central Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA Australia
- Transplant Immunology Laboratory; Basil Hetzel Institute for Medical Research; The Queen Elizabeth Hospital; Woodville SA Australia
- School of Medicine; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
5
|
Sweeney C, Ward J, Vallender EJ. Naturally occurring, physiologically normal, primate chimeras. CHIMERISM 2012; 3:43-4. [PMID: 22627807 DOI: 10.4161/chim.20729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Callitrichids, South American primates including marmosets and tamarins, have evolved a unique physiology. Twins share a placenta during gestation and exchange stem cells, resulting in naturally occurring chimeric adults. Our study used a quantitative PCR-based assay to address whether this chimerism was restricted to blood and other cells of the hematopoietic lineage or whether it extended to other somatic tissues. These studies help to characterize species that have adapted evolutionarily to pervasive chimerism, with every individual healthy and unperturbed. This experiment of evolution offers insight into transplantation and histocompatibility, reproductive biology and behavior, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Carolyn Sweeney
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | |
Collapse
|
6
|
Jesudason S, Collins MG, Rogers NM, Kireta S, Coates PTH. Non-human primate dendritic cells. J Leukoc Biol 2011; 91:217-28. [PMID: 22124138 DOI: 10.1189/jlb.0711355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-human primates (NHP) are essential translational models for biomedical research. Dendritic cells (DC) are a group of antigen presenting cells (APC) that play pivotal roles in the immunobiology of health and disease and are attractive cells for adoptive immunotherapy to stimulate and suppress immunity. DC have been studied extensively in humans and mice but until recently, have not been well characterized in NHP. This review considers the available data about DC across a range of NHP species and summarizes the understanding of in vitro-propagated DC and in vivo-isolated DC, which is now established. It is clear that although NHP DC exist within the paradigm of human DC, there are important functional and phenotypic differences when compared with human DC subsets. These differences need to be taken into account when designing preclinical, translational studies of DC therapy using NHP models.
Collapse
Affiliation(s)
- Shilpanjali Jesudason
- Transplantation Immunology Laboratory and Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital Campus, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
7
|
Katoh H, Takabayashi S, Itoh T. Development of microsatellite DNA markers and their chromosome assignment in the common marmoset. Am J Primatol 2010; 71:912-8. [PMID: 19637280 DOI: 10.1002/ajp.20729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study was performed to develop microsatellite DNA markers, which are useful for linkage analyses, gene mapping and blood chimera analyses in the common marmoset (Callithrix jacchus). We searched 153 of 295 bacterial artificial clone DNA sequences of the common marmoset that were archived in the NCBI database in 2004. On the basis of the search, we designed 186 PCR primer sets. When tested using 5 unrelated individuals, we successfully detected 154 markers with PCR products, of which 80 (52%) were polymorphic and 74 (48%) were monomorphic. We assigned each of the 154 markers to a human chromosome based on BLAST searches, which was achieved by searching the entire human genome sequences using an approximately 3 kb section of each forward primer sequence, including approximately 1.5 kb of the upstream and approximately 1.5 kb of the downstream sequences. Combining our assignment data and the chromosome painting-assisted karyotype of the common marmoset [Sherlock et al., Genomics 33:214-219, 1996], we prepared a list of 154 microsatellite DNA markers that were assigned to human chromosomes, except for the Y chromosome, which is equivalent to a chromosome map. Using five microsatellite DNA markers, we have established a fragment analysis method with a sequencer, which can be routinely used for blood chimera analysis, parentage diagnosis and individual identification.
Collapse
Affiliation(s)
- Hideki Katoh
- Institute for Experimental Animals, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
8
|
Prasad S, Kireta S, Leedham E, Russ GR, Coates PTH. Propagation and characterisation of dendritic cells from G-CSF mobilised peripheral blood monocytes and stem cells in common marmoset monkeys. J Immunol Methods 2009; 352:59-70. [PMID: 19931270 DOI: 10.1016/j.jim.2009.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 01/06/2023]
Abstract
The common marmoset is a small New World Primate that has been used as an immunological model for a number of human diseases. Dendritic cells (DC) have not been extensively characterised in this species and in particular protocols to derive DC from living donors without the need for animal sacrifice are presently lacking. This study establishes new protocols to generate substantial numbers of marmoset DC for use in cell therapy studies. Recombinant human G-CSF was used to mobilise peripheral blood monocytes and CD34(+) stem cells in sufficient numbers for large scale in-vitro DC propagation using cytokine conditioning including IL-4, GM-CSF, FLT3-L, stem cell factor and thrombopoietin. Marmoset DC exhibited morphology similar to human DC, were capable of antigen uptake and presentation and had moderate allo-stimulatory ability. Monocyte-derived DC had a maturation-resistant immature phenotype, whereas haematopoietic precursor-derived DC were semi-mature in phenotype and function. This study confirms the feasibility of the marmoset as a unique small primate model in which to pursue DC-based immunotherapy strategies.
Collapse
Affiliation(s)
- Shilpanjali Prasad
- Transplantation Immunology Laboratory and Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital Campus, 28 Woodville Road, Woodville, SA 5011, Australia
| | | | | | | | | |
Collapse
|
9
|
Gervais A, Eymard JC, Toulmonde E, Bernard J. Selected allogeneic dendritic cells markedly enhance human tumour antigen-specific T cell response in vitro. Cancer Immunol Immunother 2009; 58:1831-41. [PMID: 19330330 PMCID: PMC11030287 DOI: 10.1007/s00262-009-0694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 03/07/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. OBJECTIVE This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. RESULTS Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. CONCLUSION Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses.
Collapse
Affiliation(s)
- Alban Gervais
- Institut Jean Godinot, Unité de Thérapie Cellulaire, Reims, France.
| | | | | | | |
Collapse
|
10
|
Toda M. Analysis of dendritic cells from common marmosets for the treatment of CNS injury. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Virus-specific T-cell immunity correlates with control of GB virus B infection in marmosets. J Virol 2007; 82:3054-60. [PMID: 18094181 DOI: 10.1128/jvi.01153-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GB virus B (GBV-B) is a hepatotropic virus that is closely related to hepatitis C virus (HCV). GBV-B causes acute hepatitis in infected marmosets and tamarins and is therefore a useful small-animal model for the study of HCV. We investigated virus-specific T-cell responses in marmosets infected with GBV-B. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses in the peripheral blood of two marmosets were assessed throughout the course of GBV-B infection. These T-cell responses were directed against the GBV-B nonstructural proteins 3 (NS3), 4A (NS4A), and 5B (NS5B), and their appearance was temporally associated with clearance of viremia. These marmosets were then rechallenged with GBV-B at least 3 months after clearance of the primary infection to determine if the animals were protected from reinfection. There was no detectable viremia following reinfection, although a sharp increase in T-cell responses against GBV-B proteins was observed. Epitope mapping of T-cell responses to GBV-B was performed with liver and blood samples from both marmosets after rechallenge with GBV-B. Three shared, immunodominant T-cell epitopes within NS3 were identified in animals with multiple common major histocompatibility complex class I alleles. IFN-gamma ELISPOT responses were also detected in the livers of two marmosets that had resolved a primary GBV-B infection. These responses were high in frequency and were directed against epitopes within GBV-B NS3, NS4A, and NS5B proteins. These results indicate that virus-specific T-cell responses are detectable in the liver and blood of GBV-B-infected marmosets and that the clearance of GBV-B is associated with the appearance of these responses.
Collapse
|