1
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
2
|
Liu N, Sadlon T, Wong YY, Pederson S, Breen J, Barry SC. 3DFAACTS-SNP: using regulatory T cell-specific epigenomics data to uncover candidate mechanisms of type 1 diabetes (T1D) risk. Epigenetics Chromatin 2022; 15:24. [PMID: 35773720 PMCID: PMC9244893 DOI: 10.1186/s13072-022-00456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have enabled the discovery of single nucleotide polymorphisms (SNPs) that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the identified variants lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression. To address this problem, we developed a variant filtering workflow called 3DFAACTS-SNP to link genetic variants to target genes in a cell-specific manner. Here, we use 3DFAACTS-SNP to identify candidate SNPs and target genes associated with the loss of immune tolerance in regulatory T cells (Treg) in T1D. Results Using 3DFAACTS-SNP, we identified from a list of 1228 previously fine-mapped variants, 36 SNPs with plausible Treg-specific mechanisms of action. The integration of cell type-specific chromosome conformation capture data in 3DFAACTS-SNP identified 266 regulatory regions and 47 candidate target genes that interact with these variant-containing regions in Treg cells. We further demonstrated the utility of the workflow by applying it to three other SNP autoimmune datasets, identifying 16 Treg-centric candidate variants and 60 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all known common (> 10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 9376 candidate variants and 4968 candidate target genes, generating a list of potential sites for future T1D or other autoimmune disease research. Conclusions We demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function, and illustrate the power of using cell type-specific multi-omics datasets to determine disease mechanisms. Our workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00456-5.
Collapse
Affiliation(s)
- Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Ying Y Wong
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Adelaide, Australia. .,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia. .,Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia. .,John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| |
Collapse
|
3
|
Hope CM, Welch J, Mohandas A, Pederson S, Hill D, Gundsambuu B, Eastaff-Leung N, Grosse R, Bresatz S, Ang G, Papademetrios M, Zola H, Duhen T, Campbell D, Brown CY, Krumbiegel D, Sadlon T, Couper JJ, Barry SC. Peptidase inhibitor 16 identifies a human regulatory T-cell subset with reduced FOXP3 expression over the first year of recent onset type 1 diabetes. Eur J Immunol 2019; 49:1235-1250. [PMID: 31127857 DOI: 10.1002/eji.201948094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
CD4+ T-cell subsets play a major role in the host response to infection, and a healthy immune system requires a fine balance between reactivity and tolerance. This balance is in part maintained by regulatory T cells (Treg), which promote tolerance, and loss of immune tolerance contributes to autoimmunity. As the T cells which drive immunity are diverse, identifying and understanding how these subsets function requires specific biomarkers. From a human CD4 Tconv/Treg cell genome wide analysis we identified peptidase inhibitor 16 (PI16) as a CD4 subset biomarker and we now show detailed analysis of its distribution, phenotype and links to Treg function in type 1 diabetes. To determine the clinical relevance of Pi16 Treg, we analysed PI16+ Treg cells from type 1 diabetes patient samples. We observed that FOXP3 expression levels declined with disease progression, suggesting loss of functional fitness in these Treg cells in Type 1 diabetes, and in particular the rate of loss of FOXP3 expression was greatest in the PI16+ve Treg. We propose that PI16 has utility as a biomarker of functional human Treg subsets and may be useful for tracking loss of immune function in vivo. The ability to stratify at risk patients so that tailored interventions can be applied would open the door to personalised medicine for Type 1 diabetes.
Collapse
Affiliation(s)
- Christoper M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | - John Welch
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Arunesh Mohandas
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Stephen Pederson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - Danika Hill
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Nicola Eastaff-Leung
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Randall Grosse
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Suzanne Bresatz
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Grace Ang
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Michael Papademetrios
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Heddy Zola
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | | | | | - Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Doreen Krumbiegel
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Timothy Sadlon
- Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | | | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| |
Collapse
|
4
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
5
|
Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol 2018; 79:294-303. [DOI: 10.1016/j.humimm.2017.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
|
6
|
Delalat B, Harding F, Gundsambuu B, De-Juan-Pardo EM, Wunner FM, Wille ML, Jasieniak M, Malatesta KA, Griesser HJ, Simula A, Hutmacher DW, Voelcker NH, Barry SC. 3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Thompson PA, Rezvani K, Hosing CM, Oran B, Olson AL, Popat UR, Alousi AM, Shah ND, Parmar S, Bollard C, Hanley P, Kebriaei P, Cooper L, Kellner J, McNiece IK, Shpall EJ. Umbilical cord blood graft engineering: challenges and opportunities. Bone Marrow Transplant 2016; 50 Suppl 2:S55-62. [PMID: 26039209 DOI: 10.1038/bmt.2015.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are entering a very exciting era in umbilical cord blood transplantation (UCBT), where many of the associated formidable challenges may become treatable by ex vivo graft manipulation and/or adoptive immunotherapy utilizing specific cellular products. We envisage the use of double UCBT rather than single UCBT for most patients; this allows for greater ability to treat larger patients as well as to manipulate the graft. Ex vivo expansion and/or fucosylation of one cord will achieve more rapid engraftment, minimize the period of neutropenia and also give certainty that the other cord will provide long-term engraftment/immune reconstitution. The non-expanded (and future dominant) cord could be chosen for characteristics such as better HLA matching to minimize GvHD, or larger cell counts to enable part of the unit to be utilized for the development of specific cellular therapies such as the production of virus-specific T-cells or chimeric-antigen receptor T-cells which are reviewed in this study.
Collapse
Affiliation(s)
- P A Thompson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - K Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - B Oran
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - U R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - N D Shah
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - S Parmar
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C Bollard
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Hanley
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Cooper
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - J Kellner
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - I K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - E J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Jebbawi F, Fayyad-Kazan H, Merimi M, Lewalle P, Verougstraete JC, Leo O, Romero P, Burny A, Badran B, Martiat P, Rouas R. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes. J Transl Med 2014; 12:218. [PMID: 25090912 PMCID: PMC4440568 DOI: 10.1186/s12967-014-0218-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
Background Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation. Methods We purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA ‘signature’ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the ‘TargetScan’ and ‘miRBase’ bioinformatics programs to identify potential target sites for these microRNAs in the 3′-UTR of important Treg cell-associated genes. Results The human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. Conclusions We are examining the biological relevance of this ‘signature’ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.
Collapse
Affiliation(s)
- Fadi Jebbawi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Hussein Fayyad-Kazan
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Makram Merimi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Philippe Lewalle
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | | | - Oberdan Leo
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Pedro Romero
- Ludwig Center for Cancer Research of the University of Lausanne, Lausanne, Switzerland.
| | - Arsene Burny
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Bassam Badran
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Faculty of Sciences, Lebanese University, Hadath-Beirut, Lebanon.
| | - Philippe Martiat
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Redouane Rouas
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| |
Collapse
|
9
|
Juvet SC, Whatcott AG, Bushell AR, Wood KJ. Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning. Am J Transplant 2014; 14:750-63. [PMID: 24592900 DOI: 10.1111/ajt.12647] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/25/2023]
Abstract
Owing to the adverse effects of immunosuppression and an inability to prevent chronic rejection, there is a pressing need for alternative strategies to control alloimmunity. In three decades, regulatory T cells (Tregs) have evolved from a hypothetical mediator of adoptively transferred tolerance to a well-defined population that can be expanded ex vivo and returned safely to patients in clinical trials. Herein, we review the historical developments that have permitted these advances and the current status of clinical trials examining Tregs as a cellular therapy in transplantation. We conclude by discussing the critical unanswered questions that face this field in the coming years.
Collapse
Affiliation(s)
- S C Juvet
- Nuffield Department of Surgical Sciences, Transplantation Research Immunology Group, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
10
|
Milward K, Issa F, Hester J, Figueroa-Tentori D, Madrigal A, Wood KJ. Multiple unit pooled umbilical cord blood is a viable source of therapeutic regulatory T cells. Transplantation 2013; 95:85-93. [PMID: 23263503 PMCID: PMC4516307 DOI: 10.1097/tp.0b013e31827722ed] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cells (Treg) are potentially a useful therapeutic option for the treatment of immunopathological conditions including graft-versus-host disease. Umbilical cord blood (UCB) offers certain advantages over adult peripheral blood (APB) as a source of Treg for cellular therapy but yields far fewer Treg per unit. Pooling of Treg from multiple donors may overcome this challenge. METHODS In this study, we assessed the in vitro and in vivo efficacy of multiple donor pooled UCB or APB-derived Treg. RESULTS In vitro, pooled freshly isolated UCB-derived Treg were as suppressive as APB-derived Treg. However, in a mouse model of human skin allodestruction, pooled UCB-derived Treg were more potent at suppressing alloresponses and prolonging skin survival compared with pooled APB-derived Treg. Improved survival of UCB Treg in an in vivo cell survival assay and their lower expression of human leukocyte antigen-ABC suggested that lower immunogenicity may account for their superior efficacy in vivo. CONCLUSION Multiple-unit UCB is therefore a viable source of human Treg for cellular therapy, and pooling of Treg from multiple donors offers a useful strategy for achieving required therapeutic doses.
Collapse
Affiliation(s)
- Kate Milward
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Alejandro Madrigal
- Anthony Nolan Research Institute, The Royal Free Hospital, UCL Cancer Institute, London, UK
| | - Kathryn J. Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Chakraborty R, Rooney C, Dotti G, Savoldo B. Changes in chemokine receptor expression of regulatory T cells after ex vivo culture. J Immunother 2012; 35:329-36. [PMID: 22495390 DOI: 10.1097/cji.0b013e318255adcc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By controlling and limiting inflammatory conditions, naturally occurring regulatory T cells (Tregs), defined as circulating CD4(+)CD25(bright)FoxP3(+) cells, play critical roles in maintaining tolerance and preventing autoimmunity and thus have tremendous potential for adoptive immunotherapy. Because they represent a scanty subset of the CD4(+) T-lymphocyte subset, several approaches have been developed to isolate and expand ex vivo polyclonal Tregs. However, one limitation of the functional analyses performed on these cultured Tregs is the incomplete characterization of their tissue-trafficking properties. As this aspect provides crucial information for their therapeutic effects, we have here explored the chemokine receptor expression profile and function of Tregs cultured ex vivo with validated expansion protocols. Our data show that ex vivo cultured Tregs retained the expression of CCR7 but dramatically downregulated CCR5 as compared with freshly isolated Tregs. The differential chemokine receptors expression pattern corroborated with their respective steady state messenger RNA expression and also with their migration toward specific chemokines. Our analyses suggest that ex vivo cultured Tregs may display impaired or suboptimal migration to the inflamed tissues releasing RANTES and MIP-1α chemokines.
Collapse
Affiliation(s)
- Rikhia Chakraborty
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Inhibition of activation induced CD154 on CD4
+
CD25
−
cells: a valid surrogate for human Treg suppressor function. Immunol Cell Biol 2012; 90:812-21. [DOI: 10.1038/icb.2012.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Rios CMR, Velilla PA, Rugeles MT. Chronically HIV-1 Infected Patients Exhibit Low Frequencies of CD25+ Regulatory T Cells. Open Virol J 2012; 6:49-58. [PMID: 22582105 PMCID: PMC3350015 DOI: 10.2174/1874357901206010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/22/2022] Open
Abstract
The characterization of regulatory T cells (Treg) during HIV infection has become of particular interest considering their potential role in the pathogenesis of the acquired immunodeficiency syndrome. Different reports on Tregs in HIV-infected patients vary greatly, depending on the state of disease progression, anatomical compartment, and the phenotypic markers used to define this cell subpopulation. To determine the frequency of Tregs we included paired samples from peripheral blood and rectal biopsies from controls and chronic HIV patients with or without detectable viral load. Tregs were determined by flow cytometry using three different protocols: CD4+Foxp3+; CD4+Foxp3+CD127Low/-, and CD4+CD25+CD127Low/-. In addition, and with the purpose to compare the different protocols we also characterized Tregs in peripheral blood of HIV negative individuals with influenza like symptoms. Here, we report that Treg characterization in HIV-infected patients as CD4+Foxp3+ and CD4+Foxp3+CD127Low/- cells was similar, indicating that both protocols represent a suitable method to determine the frequency of Tregs in peripheral blood mononuclear cells (PBMC) and gut associated lymphoid tissue (GALT). In contrast, in HIV but not in flu-like patients, detection of Tregs as CD4+CD25+CD127Low/- cells resulted in a significantly lower percentage of these cells. In both, HIV patients and controls the frequency of Treg was significantly higher in GALT compared to PBMC. The frequency of Tregs in PBMC and GALT using CD4+Foxp3+ and CD4+Foxp3+CD127Low/- was higher in HIV patients than in controls. Similarly, the frequency of Treg using any protocol was higher in flu-like patients compared to controls. The results suggest that relying on the expression of CD25 could be unsuitable to characterize Tregs in PBMC and GALT samples from a chronic infection such as HIV.
Collapse
|
14
|
Yang J, Fan H, Hao J, Ren Y, Chen L, Li G, Xie R, Yang Y, Qian K, Liu M. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion 2011; 52:1333-47. [PMID: 22098312 DOI: 10.1111/j.1537-2995.2011.03448.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human cord blood (CB) is a superior source of regulatory T cells (Tregs) compared with peripheral blood. Initial studies have shown that CB-derived Tregs can be effectively expanded ex vivo. However, in vitro suppressor activity of expanded CB-Tregs and their efficacy in the prevention of acute graft-versus-host disease (aGVHD) in vivo are poorly understood. STUDY DESIGN AND METHODS In vitro, human CB CD4+CD25+ T cells expanded with anti-CD3/CD28 beads plus interleukin (IL)-2 and the phenotypes, expression of cytokines, and suppression of expanded cells were analyzed after two cycles of stimulation. In vivo, the addition of human CB-Tregs was transferred in the major histocompatibility complex-mismatched aGVHD mouse model. Survival, body weight, GVHD scoring, histopathologic specimens, serum cytokines, and Th subsets were analyzed in CB-Treg-treated mice and untreated controls. RESULTS After being expanded ex vivo, human CB-derived Tregs with potent suppressor function could meet clinical demands. Up to 85% of mice with CB-Tregs treatment survived beyond Day 63 after bone marrow transplantation; however, all aGVHD mice died within 18 days. In the serum of the CB-Treg-treated mice, the production of transforming growth factor-β increased continuously, as opposed to IL-17, which decreased quickly. Consistent with the changes of cytokines, the percentage of mouse CD4+ forkhead box protein 3+ Tregs increased while that of Th17 cells decreased. CONCLUSION Ex vivo expanded human CB-Tregs significantly prevented allogeneic aGVHD in vivo by modulating various cytokine secretion and polarizing the Treg/Th17 balance toward Treg, which suggests the potential use of expanded CB-Tregs as a therapeutic approach for GVHD.
Collapse
Affiliation(s)
- Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brown CY, Sadlon T, Gargett T, Melville E, Zhang R, Drabsch Y, Ling M, Strathdee CA, Gonda TJ, Barry SC. Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector. Hum Gene Ther 2011; 21:1005-17. [PMID: 20615123 DOI: 10.1089/hum.2009.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.
Collapse
Affiliation(s)
- Cheryl Y Brown
- Women's and Children's Health Research Institute, Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lisciandro JG, van den Biggelaar AHJ. Neonatal immune function and inflammatory illnesses in later life: lessons to be learnt from the developing world? Clin Exp Allergy 2010; 40:1719-31. [PMID: 20964742 DOI: 10.1111/j.1365-2222.2010.03629.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the emergence of allergic and autoimmune diseases in populations that have started to transit to a western lifestyle, there has been an increasing interest in the role of environmental factors modulating early immune function. Yet, most of the information concerning neonatal immune function has been derived from studies in westernized countries. We postulate that comparative studies of early immune development in children born under conditions that are typical for a westernized vs. that of a still more traditional setting will provide a crucial insight into the environmental-driven immunological mechanisms that are responsible for the world-wide rise in inflammatory disorders. In this review, we summarize the current understanding of early-life immune function in humans in general and the literature on some major lifestyle factors that may influence neonatal immune function and potentially the risk for disease in later life. An understanding of the mechanisms of 'prenatal/early-life programming' in populations living in traditional compared with modern societies is crucial to develop strategies to prevent a further rise in 'western diseases' such as allergic disorders. Indications exist that prenatal conditioning of the innate immune system by low-grade inflammatory responses is key to inducing more tightly regulated postnatal adaptive immune responses.
Collapse
Affiliation(s)
- J G Lisciandro
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
17
|
Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bresatz S, Gargett T, Melville EL, Peng K, D'Andrea RJ, Glonek GG, Goodall GJ, Zola H, Shannon MF, Barry SC. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:1071-81. [PMID: 20554955 DOI: 10.4049/jimmunol.1000082] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3(+) Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25(+)FOXP3(+) Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.
Collapse
Affiliation(s)
- Timothy J Sadlon
- Molecular Immunology Laboratory, Women's and Children's Health Research Institute, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rouas R, Fayyad‐Kazan H, El Zein N, Lewalle P, Rothé F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B. Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression. Eur J Immunol 2009; 39:1608-18. [DOI: 10.1002/eji.200838509] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 2009; 15:517-35. [PMID: 19279047 PMCID: PMC2725755 DOI: 10.1093/humupd/dmp004] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with potent suppressive activity and pivotal roles in curtailing destructive immune responses and preventing autoimmune disease. METHODS A systematic review was undertaken of the published literature on Treg cells in the ovary, testes, uterus and gestational tissues in pregnancy, and their link with infertility, miscarriage and pathologies of pregnancy. An overview of current knowledge on the generation, activation and modes of action of Treg cells in controlling immune responses is provided, and strategies for manipulating regulatory T-cells for potential applications in reproductive medicine are discussed. RESULTS Studies in mouse models show that Treg cells are essential for maternal tolerance of the conceptus, and that expansion of the Treg cell pool through antigen-specific and antigen non-specific pathways allows their suppressive actions to be exerted in the critical peri-implantation phase of pregnancy. In women, Treg cells accumulate in the decidua and are elevated in maternal blood from early in the first trimester. Inadequate numbers of Treg cells or their functional deficiency are linked with infertility, miscarriage and pre-eclampsia. CONCLUSIONS The potency and wide-ranging involvement of Treg cells in immune homeostasis and disease pathology indicates the considerable potential of these cells as therapeutic agents, raising the prospect of their utility in novel treatments for reproductive pathologies.
Collapse
Affiliation(s)
- Leigh R Guerin
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
20
|
Hutton JF, Gargett T, Sadlon TJ, Bresatz S, Brown CY, Zola H, Shannon MF, D'Andrea RJ, Barry SC. Development of CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor cells. J Leukoc Biol 2008; 85:445-51. [PMID: 19103952 DOI: 10.1189/jlb.1008620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrate to the thymus, where their terminal differentiation and maturation occur, and it is during this phase that selection shapes the immune repertoire. Notch ligands, including Delta-like 1 (DL1), play a critical role in this lymphoid differentiation. To mimic this in vitro, stroma-expressing DL1 have been used to generate CD4(+)CD8(+) double-positive and single-positive T cells from hematopoietic stem/progenitor cells. This system provides a robust tool to investigate thymopoiesis; however, its capacity to generate regulatory T cells (Tregs) has yet to be reported. Natural Tregs (nTregs) develop in the thymus and help maintain immune homeostasis and have potential clinical use as a cell therapy for modulation of autoimmune disease or for transplant tolerization. Here, we describe for the first time the development of a population of CD4(+)CD25(+) CD127(lo)FoxP3(+) cells that emerge in coculture of cord blood (CB) CD34(+) progenitors on OP9-DL1 stroma. These hematopoietic progenitor-derived CD4(+)CD25(+) Tregs have comparable suppressor function with CB nTregs in vitro. The addition of IL-2 to the coculture enhanced the expansion and survival of this population significantly. This manipulable culture system, therefore, generates functional Tregs and provides a system to elucidate the mechanism of Treg development.
Collapse
Affiliation(s)
- Jonathon F Hutton
- Molecular Immunology Laboratory, Discipline of Paediatrics, University of Adelaide, North Adelaide, South Australia 5006
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Figueroa-Tentori D, Querol S, Dodi IA, Madrigal A, Duggleby R. High purity and yield of natural Tregs from cord blood using a single step selection method. J Immunol Methods 2008; 339:228-35. [DOI: 10.1016/j.jim.2008.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/24/2008] [Indexed: 12/25/2022]
|