1
|
Fredriksson J, Holdfeldt A, Mårtensson J, Björkman L, Møller TC, Müllers E, Dahlgren C, Sundqvist M, Forsman H. GRK2 selectively attenuates the neutrophil NADPH-oxidase response triggered by β-arrestin recruiting GPR84 agonists. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119262. [PMID: 35341806 DOI: 10.1016/j.bbamcr.2022.119262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by β-arrestin recruitment data. The ROS production induced by a non β-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this β-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with β-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.
Collapse
Affiliation(s)
- Johanna Fredriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Mårtensson J, Sundqvist M, Manandhar A, Ieremias L, Zhang L, Ulven T, Xie X, Björkman L, Forsman H. The Two Formyl Peptide Receptors Differently Regulate GPR84-Mediated Neutrophil NADPH Oxidase Activity. J Innate Immun 2021; 13:242-256. [PMID: 33789297 DOI: 10.1159/000514887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of β-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.
Collapse
Affiliation(s)
- Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Loukas Ieremias
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Linjie Zhang
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Di Paola R, Fusco R, Gugliandolo E, D'Amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res 2019; 141:591-601. [PMID: 30711419 DOI: 10.1016/j.phrs.2019.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease is characterised by intricate immune cell interactions with tissue cells and such cross-talks can become deregulated. The formyl peptide receptor 1 (Fpr1) is expressed by both immune and stromal cells including epithelial cells. We evaluated the development of the physiopathology of the DNBS induced colitis in Fpr1 KO mice on the C57BL/6 genetic background compared to C57BL/6 genetic background animals. We have assessed both macroscopic and histological markers of the diseased, together with the immunohistochemical and molecular changes. DNBS-treated Fpr1 KO mice showed a i) reduction in weight loss, ii) lower extent of colon injury and iii) an increase in MPO activity. Molecular analyses indicated that in absence of Fpr1 there was reduced NF-κB translocation into the nucleus, cytokines levels, FOXP3 and GATA3, CD4, CD8 and CD45 expression as well as a dysregulation of TGF-β signalling. In addition, the colon of DNBS-injected Fpr1 KO mice displayed a lower degree of expression of Bax and higher expression of Bcl-2 compared correspondent WT mice. Finally, intravital microscopy investigation of the microcirculation post-DNBS instillation revealed a lower degree of neutrophil-endothelial cell rolling and adhesion - mediated by P-selectin and ICAM-1 - in Fpr1 KO mice. All the main outcome in the study have a P-value, statistical significance of evidence, less than 0.05. We provide evidence for an important pathogenic role of mouse Fpr1 in experimental colitis, an outcome effected through modulation of immune cell recruitment together with a modulation of local cellular activation and survival.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
4
|
Kiffin R, Grauers Wiktorin H, Nilsson MS, Aurelius J, Aydin E, Lenox B, Nilsson JA, Ståhlberg A, Thorén FB, Hellstrand K, Martner A. Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2. Front Oncol 2018; 8:218. [PMID: 29967760 PMCID: PMC6015904 DOI: 10.3389/fonc.2018.00218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
In patients with acute myeloid leukemia (AML), treatment with histamine dihydrochloride (HDC) and low-dose IL-2 (HDC/IL-2) in the post-chemotherapy phase has been shown to reduce the incidence of leukemic relapse. The clinical benefit of HDC/IL-2 is pronounced in monocytic forms of AML, where the leukemic cells express histamine type 2 receptors (H2R) and the NAPDH oxidase-2 (NOX2). HDC ligates to H2Rs to inhibit NOX2-derived formation of reactive oxygen species, but details regarding the anti-leukemic actions of HDC remain to be elucidated. Here, we report that human NOX2+ myelomonocytic/monocytic AML cell lines showed increased expression of maturation markers along with reduced leukemic cell proliferation after exposure to HDC in vitro. These effects of HDC were absent in corresponding leukemic cells genetically depleted of NOX2 (NOX2-/-). We also observed that exposure to HDC altered the expression of genes involved in differentiation and cell cycle progression in AML cells and that these effects required the presence of NOX2. HDC promoted the differentiation also of primary monocytic, but not non-monocytic, AML cells in vitro. In a xenograft model, immunodeficient NOG mice were inoculated with wild-type or NOX2-/- human monocytic AML cells and treated with HDC in vivo. The administration of HDC reduced the in vivo expansion of NOX2+/+, but not of NOX2-/- human monocytic AML cells. We propose that NOX2 may be a conceivable target in the treatment of monocytic AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anna Martner
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Stålhammar ME, Douhan Håkansson L, Sindelar R. Bacterial N-formyl Peptides Reduce PMA- and Escherichia coli-Induced Neutrophil Respiratory Burst in Term Neonates and Adults. Scand J Immunol 2017; 85:365-371. [PMID: 28199745 DOI: 10.1111/sji.12537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
Neutrophil migration and respiratory burst are the prerequisite for efficient first line defense against invading microorganisms. However, migration and respiratory burst can be compromised in adults and especially in newborn infants, where sustained neutrophil accumulation, uncontrolled burst and reduced scavenging of ROS might cause inadvertent tissue damage due to uncontrolled inflammation. The aim of this study was to investigate the modulatory effect of the chemoattractants formyl-methionyl-leucyl-phenylalanine (fMLP) and IL-8 on respiratory burst in neutrophils from term newborn infants and adults. Whole blood from the umbilical cord of 17 healthy term newborn infants delivered by caesarean section and from 17 healthy adults as reference was preincubated with fMLP or IL-8 and stimulated with PMA or Escherichia coli bacteria. Respiratory burst was quantified by flow cytometry analysis of dihydrorhodamine 123 fluorescence. fMLP reduced the PMA-induced respiratory burst of neutrophils from newborn infants and adults by 12% and 21%, respectively (P < 0.05). E. coli-induced burst was also reduced by fMLP in neutrophils from newborn infants (10%; P < 0.01) and adults (6%; P < 0.05). No such changes were observed with IL-8. Similar respiratory burst in response to single stimulus with PMA or E. coli was observed in both newborn infants and adults. fMLP reduced PMA- and E. coli-induced respiratory burst of neutrophils in whole blood from term newborn infants as well as in adults. The reduced respiratory burst by fMLP might be a mechanism to reduce the detrimental effects of uncontrolled inflammation during neutrophil migration.
Collapse
Affiliation(s)
- M E Stålhammar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - R Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Stålhammar ME, Sindelar R, Douhan Håkansson L. Neutrophil Receptor Response to Bacterial N-formyl Peptides is Similar in Term Newborn Infants and Adults in Contrast to IL-8. Scand J Immunol 2017; 84:332-337. [PMID: 27606963 DOI: 10.1111/sji.12477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/03/2016] [Indexed: 11/26/2022]
Abstract
We have previously observed that neutrophils from neonates exhibit different migratory responses to intermediate and end-target chemoattractants compared to adults. The aim of this study was to investigate the effect of the chemoattractants IL-8 (intermediate) and formyl-methionyl-leucyl-phenylalanine (fMLP; end-target) on cell surface receptor expression involved in adhesion, migration and granule release of neutrophils from term newborn infants and adults. Heparinized cord blood from 16 healthy term newborn infants delivered by caesarean section and peripheral blood from 17 healthy adults were incubated with 1 μm IL-8 or 0.1 μm fMLP, previously defined as optimal inducers of neutrophil migration. The leukocytes were labelled with antibodies to cell surface receptors (CD11b, CD15S, CD18, CD35, CD44, CD64, CD65, CD88, CD162, CD181 and CD182). Receptor expression was quantified by flow cytometry analysis. Upregulation of CD11b and downregulation of CD88 and CD182 after stimulation with IL-8 were more pronounced in adults than in neonates (P < 0.05, P < 0.05 and P ≤ 0.001, respectively), whereas fMLP induced changes in receptor expression that were of the same magnitude in neutrophils from neonates as from adults. We observed similar expression of receptors that mediate adhesion, migration, granule activation and phagocytosis induced by fMLP in neutrophils from neonates and adults. In contrast, differences between neonates and adults, induced by IL-8, suggest that the neutrophil response to intermediate chemoattractants might lead to a compromised infectious response in newborn infants.
Collapse
Affiliation(s)
- M E Stålhammar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - R Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
7
|
Stålhammar ME, Douhan Håkansson L, Jonzon A, Sindelar R. Differential neutrophil chemotactic response towards IL-8 and bacterial N-formyl peptides in term newborn infants. Ups J Med Sci 2017; 122:35-42. [PMID: 27690722 PMCID: PMC5361430 DOI: 10.1080/03009734.2016.1228721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A prerequisite for an effective innate immunity is the migrative ability of neutrophils to respond to inflammatory and infectious agents such as the intermediate interleukin (IL)-8 and the end-target formyl-methionyl-leucyl-phenylalanine (fMLP) chemoattractants. The aim was to study the chemotactic capacity of neutrophils from newborn infants and adults in response to IL-8 and the bacterial peptide fMLP. METHODS In the under-agarose cell migration assay, isolated leukocytes from healthy adults and from cord blood of healthy term newborn infants were studied with dose responses towards IL-8 and fMLP. The same number of leukocytes (1 × 105 cells), with the same distribution of neutrophils and monocytes, were analyzed in neonates and adults. Chemotaxis was distinguished from randomly migrating neutrophils, and the neutrophil pattern of migration, i.e. the migration distance and the number of migrating neutrophils per distance, was evaluated. RESULTS In comparison to adults, fewer neutrophils from newborn infants migrated towards IL-8 and for a shorter distance (P < .01, respectively). The number of neutrophils migrating to different gradients of fMLP, the distance they migrated, and the correlation between the number and the distance were the same for neonates and adults. Random migration did not differ in any instance. CONCLUSION Chemotaxis of neutrophils from newborn infants was as co-ordinated as neutrophils from adults in response to fMLP, whereas the response to IL-8 was reduced. The differential response of neutrophils from neonates to intermediate and end-target chemoattractants could indicate a reduced infectious response.
Collapse
Affiliation(s)
- Maria E. Stålhammar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- CONTACT Maria Stålhammar Department of Women’s and Children’s Health, Uppsala University, Uppsala University Children’s Hospital, SE-751 85 Uppsala, Sweden
| | | | - Anders Jonzon
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Formylated MHC Class Ib Binding Peptides Activate Both Human and Mouse Neutrophils Primarily through Formyl Peptide Receptor 1. PLoS One 2016; 11:e0167529. [PMID: 27907124 PMCID: PMC5132201 DOI: 10.1371/journal.pone.0167529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Two different immune recognition systems have evolved in parallel to recognize peptides starting with an N-formylated methionine, and recognition similarities/differences between these two systems have been investigated. A number of peptides earlier characterized in relation to the H2-M3 complex that presents N-formylated peptides to cytotoxic T cells, have been characterized in relation to the formyl peptide receptors expressed by phagocytic neutrophils in both men (FPRs) and mice (Fprs). FPR1/Fpr1 was identified as the preferred receptor for all fMet-containing peptides examined, but there was no direct correlation between H2-M3 binding and the neutrophil activation potencies. Similarly, there was no direct correlation between the activities induced by the different peptides in human and mouse neutrophils, respectively. The formyl group was important in both H2-M3 binding and FPR activation, but FPR2 was the preferred receptor for the non-formylated peptide. The structural requirements differed between the H2-M3 and FPR/Fpr recognition systems and these data suggest that the two recognition systems have different evolutionary traits.
Collapse
|
9
|
The peptidomimetic Lau-(Lys-βNSpe) 6-NH 2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils. Biochem Pharmacol 2016; 119:56-65. [PMID: 27614010 DOI: 10.1016/j.bcp.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The formyl peptide receptor (FPR) gene family has a complex evolutionary history and comprises eight murine members but only three human representatives. To enable translation of results obtained in mouse models of human diseases, more comprehensive knowledge of the pharmacological similarities/differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (fMIFL and PSMα2) for Fpr1 and Fpr2, respectively. These peptides were used to determine the inhibition profile of a set of antagonists with known specificities for the two FPRs in relation to the corresponding murine receptors. Some of the most potent and selective antagonists for the human receptors proved to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau-(Lys-βNSpe)6-NH2 and the hexapeptide WRW4 were identified as Fpr2-selective antagonists.
Collapse
|
10
|
Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 2016; 114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
11
|
Winther M, Gabl M, Welin A, Dahlgren C, Forsman H. A neutrophil inhibitory pepducin derived from FPR1 expected to target FPR1 signaling hijacks the closely related FPR2 instead. FEBS Lett 2015; 589:1832-9. [PMID: 26071379 DOI: 10.1016/j.febslet.2015.05.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Pepducins constitute a unique class of G-protein coupled receptor (GPCR) modulating lipopeptides. Pepducins with inhibitory effects on neutrophils could potentially be developed into anti-inflammatory pharmaceuticals. A pepducin with a peptide sequence identical to the third intracellular loop of FPR1 was found to inhibit neutrophil functions including granule mobilization and superoxide production. This FPR1-derived pepducin selectively inhibited signaling and cellular responses through FPR2, but not FPR1 as expected. Binding to the neutrophil surface of a conventional FPR2 agonist is also inhibited. The fatty acid is essential for inhibition and pepducins with shorter peptides lose in potency. In summary, a pepducin designed to target FPR1 was found to hijack FPR2 and potently inhibit neutrophil functions.
Collapse
Affiliation(s)
- Malene Winther
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
12
|
Cevik-Aras H, Kalderén C, Jenmalm Jensen A, Oprea T, Dahlgren C, Forsman H. A non-peptide receptor inhibitor with selectivity for one of the neutrophil formyl peptide receptors, FPR 1. Biochem Pharmacol 2012; 83:1655-62. [PMID: 22410002 DOI: 10.1016/j.bcp.2012.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/13/2023]
Abstract
The neutrophil formyl peptide receptors (FPR1 and FPR2) are members of the G-protein coupled receptor family. The signals generated by occupied FPRs are both pro-inflammatory and anti-inflammatory. Accordingly, these receptors have become a therapeutic target for the development of novel drugs that may be used to reduce injuries in inflammatory diseases including asthma, rheumatoid arthritis, Alzheimer's disease and cardiovascular diseases. To support the basis for a future pharmacological characterization, we have identified a small molecular non-peptide inhibitor with selectivity for FPR1. We used the FPR1 and FPR2 specific ligands fMLF and WKYMVM, respectively, and an earlier described ratio technique, to determine inhibitory activity combined with selectivity. We show that the compound 3,5-dichloro-N-(2-chloro-5-methyl-phenyl)-2-hydroxy-benzamide (BVT173187) fulfills the criteria for an FPR1 inhibitor selective for FPR1 over FPR2, and it inhibits the same functional repertoire in neutrophils as earlier described peptide antagonists. Accordingly, the new inhibitor reduced neutrophil activation with FPR1 agonists, leading to mobilization of adhesion molecules (CR3) and the generation of superoxide anion from the neutrophil NADPH-oxidase. The effects of a number of structural analogs were determined but these were either without activity or less active/specific than BVT173187. The potency of the new inhibitor for reduction of FPR1 activity was the same as that of the earlier described FPR1 antagonist cyclosporine H, but signaling through the C5aR and CXCR (recognizing IL8) was also affected by BVT173187.
Collapse
Affiliation(s)
- Hülya Cevik-Aras
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, S-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
The anionic amphiphile SDS is an antagonist for the human neutrophil formyl peptide receptor 1. Biochem Pharmacol 2010; 80:389-95. [DOI: 10.1016/j.bcp.2010.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 11/17/2022]
|
14
|
Forsman H, Dahlgren C. Lipoxin A4Metabolites/Analogues from Two Commercial Sources have No Effects on TNF-α-mediated Priming or Activation through the Neutrophil Formyl Peptide Receptors. Scand J Immunol 2009; 70:396-402. [DOI: 10.1111/j.1365-3083.2009.02311.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Wetterö J, Hellerstedt T, Nygren P, Broo K, Aili D, Liedberg B, Magnusson KE. Immobilized chemoattractant peptides mediate adhesion and distinct calcium-dependent cell signaling in human neutrophils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6803-6811. [PMID: 18507416 DOI: 10.1021/la703502y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemotaxis is the stimulated directional migration of cells in response to chemotactic factors, manifested for instance during leukocyte interaction with chemoattractants in inflammation. The N-formyl-Met-Leu-Phe (fMLF) bacterial peptide family is particularly potent in attracting and activating neutrophilic granulocytes. To accomplish defined circumstances for recruitment and activation of cells, we fabricated semitransparent gold-coated glass coverslips functionalized with chemoattractant fMLF receptor peptide agonist analogues. Peptides based on a common leading four-amino-acid sequence Gly-Gly-Gly-Cys were thus coupled to two potent fMLF receptor agonists, N-formyl-Tyr-Nle-Phe-Leu-Nle-Gly-Gly-Gly-Cys and N-formyl-Met-Leu-Phe-Gly-Gly-Gly-Cys, and a formylated control peptide, N-formyl-Gly-Gly-Gly-Cys. They were anchored via the SH group of Cys either directly to the gold surface or a mixed self-assembled monolayer composed of maleimide- and hydroxyl-terminated oligo(ethylene glycol) alkyldisulfides. The overall peptide immobilization procedure was characterized with ellipsometry, contact angle measurement, and infrared spectroscopy. When exposed to granulocytes, the agonist surface rapidly recruited neutrophils and the cells responded with extensive spreading and intracellular calcium transients within minutes. The reference peptide generated no such activation, and the cells maintained a more spherical morphology, suggesting that we have been able to immobilize chemoattractant receptor agonist peptides with retained bioactivity. This is a crucial step in designing surfaces with specific effects on cellular behavior.
Collapse
Affiliation(s)
- Jonas Wetterö
- Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|