1
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
2
|
Bartone RD, Tisch LJ, Dominguez J, Payne CK, Bonner JC. House Dust Mite Proteins Adsorb on Multiwalled Carbon Nanotubes Forming an Allergen Corona That Intensifies Allergic Lung Disease in Mice. ACS NANO 2024. [PMID: 39259863 PMCID: PMC11440643 DOI: 10.1021/acsnano.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.
Collapse
Affiliation(s)
- Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only recognized causal treatment for allergic disease that modulates the immune system toward a tolerogenic or desensitized state. Allergens or their derivative preparations are formulated with adjuvants of different origin and having diverse immunological functions, such as prolonged tissue release and specific immunomodulatory properties. In the last 2 decades, thanks to developments in the field of nanotechnology, more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. RECENT FINDINGS Nanomaterials possess unique and versatile properties which can be employed to develop drug carriers with safer profiles, better stability in physiological conditions and immunomodulatory properties. Nanoparticles can have an adjuvant effect per se or also when they are packed in structures whose physical-chemical properties can be handled in a way that also influences its release dynamics. In particular, it has been suggested that nanoparticle preparations can be put in complexes or loaded with allergens or allergenic extracts, opening the way to innovative paradigms. SUMMARY In this review, we analyze allergen/nanoparticle properties in terms of cytotoxicity, stability and immunogenic reaction in in-vitro and animal systems.
Collapse
|
4
|
Sadeghi M, Keshavarz Shahbaz S, Dehnavi S, Koushki K, Sankian M. Current possibilities and future perspectives for improving efficacy of allergen-specific sublingual immunotherapy. Int Immunopharmacol 2021; 101:108350. [PMID: 34782275 DOI: 10.1016/j.intimp.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Allergen-specific sublingual immunotherapy (SLIT), a safe and efficient route for treating type I hypersensitivity disorders, requires high doses of allergens. SLIT is generally performed without adjuvants and delivery systems. Therefore, allergen formulation with appropriate presentation platforms results in improved allergen availability, targeting the immune cells, inducing regulatory immune responses, and enhancing immunotherapy's efficacy while decreasing the dose of the allergen. In this review, we discuss the adjuvants and delivery systems that have been applied as allergen-presentation platforms for SLIT. These adjuvants include TLRs ligands, 1α, 25-dihydroxy vitamin D3, galectin-9, probiotic and bacterial components that provoke allergen-specific helper type-1 T lymphocytes (TH1), and regulatory T cells (Tregs). Another approach is encapsulation or adsorption of the allergens into a particulate vector system to facilitate allergen capture by tolerogenic dendritic cells. Also, we proposed strategies to increasing the efficacy of SLIT via new immunopotentiators and carrier systems in the future.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Pali-Schöll I, DeBoer DJ, Alessandri C, Seida AA, Mueller RS, Jensen-Jarolim E. Formulations for Allergen Immunotherapy in Human and Veterinary Patients: New Candidates on the Horizon. Front Immunol 2020; 11:1697. [PMID: 32849594 PMCID: PMC7417425 DOI: 10.3389/fimmu.2020.01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Allergen immunotherapy is currently the only causal treatment for allergic diseases in human beings and animals. It aims to re-direct the immune system into a tolerogenic or desensitized state. Requirements include clinical efficacy, safety, and schedules optimizing patient or owner compliance. To achieve these goals, specific allergens can be formulated with adjuvants that prolong tissue deposition and support uptake by antigen presenting cells, and/or provide a beneficial immunomodulatory action. Here, we depict adjuvant formulations being investigated for human and veterinary allergen immunotherapy.
Collapse
Affiliation(s)
- Isabella Pali-Schöll
- University of Veterinary Medicine, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Douglas J DeBoer
- Dermatology/Allergy Section, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | | | - Ahmed Adel Seida
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, University of Munich, Munich, Germany
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020; 16:513-525. [PMID: 32343153 DOI: 10.1080/1744666x.2020.1762572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION For several years now, medicine has been benefiting from the contribution of nanoparticles (NPs) technology for both diagnosis and therapy. They can be used as adjuvants, being capable per se of immune-modulating activity, or as carriers for molecules to be transported to a specific target, eventually loaded with specific ligands favoring specific uptake. AREAS COVERED The review focuses on experimental use of NPs as adjuvants/carriers for allergen immunotherapy (AIT). Human clinical trials conducted so far are discussed. EXPERT OPINION Results of experimental studies and recent clinical trials support the use of NPs as carrier/adjuvant in AIT. Comparisons between NP-based and classical AIT are needed, to show the usefulness of the NP-based approach. However, there are still unsolved problems: the persistence of non-degradable NPs with possible toxicological consequences, and the formation of the protein corona around the NPs, which could alter their activity and fate. Virus-like particles seem the most promising NPs for allergy treatment, as for other vaccines. Over the next decade, NP-based AIT will be largely used to treat allergic disorders.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Leonardo Da Vinci, University , Chieti, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Claudia Petrarca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Alessia Gatta
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Gilda Scarano
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Anila Farinelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Loredana Della Valle
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Arianna Lumaca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Pietro Del Biondo
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Luca Di Giampaolo
- Department of Medical Oral and Biotechnological Sciences, G. d'Annunzio University , Chieti, Pescara, Italy
| |
Collapse
|
7
|
Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. Curr Pharm Des 2019; 25:3960-3982. [DOI: 10.2174/1381612825666190926161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles have gained ground in several fields. However, it is important to consider their potentially
hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally
in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors,
proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or
suppression). Here, we present different studies that have been carried out to evaluate the response of immune
cells in the presence of nanoparticles and their possible applications in the biomedical field.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Martín F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm 2018; 127:51-60. [DOI: 10.1016/j.ejpb.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
9
|
Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy 2017; 72:1461-1474. [PMID: 28474379 DOI: 10.1111/all.13199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/28/2022]
Abstract
The number of patients suffering from allergic asthma and rhinoconjunctivitis has increased dramatically within the last decades. Allergen-specific immunotherapy (AIT) is the only available cause-oriented therapy so far. AIT reduces symptoms, but has also a disease-modifying effect. Disadvantages are a long-lasting procedure, and in a few cases potential systemic adverse reactions. Encapsulation of allergens or DNA vaccines into nanostructures may provide advantages compared to the conventional AIT with noncapsulated allergen extracts: The protein/DNA molecule can be protected from degradation, higher local concentrations and targeted delivery to the site of action appear possible, and most importantly, recognition of encapsulated allergen by the immune system, especially by IgE antibodies, is prevented. AIT with nanoparticles (NPs) may offer a safer and potentially more efficient way of treatment for allergic diseases. In this review, we summarize the use of biodegradable NPs consisting of synthetic or natural polymers, liposomes, and virus-like particles as well as nonbiodegradable NPs like dendrimers, and carbon- or metal-based NPs for AIT. More or less successful applications of these NPs in prophylactic as well as therapeutic vaccination approaches in rodents or other animals as well as first human clinical trials are discussed in detail.
Collapse
Affiliation(s)
- H. Pohlit
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
- Graduate School of Excellence Materials Science in Mainz; Johannes Gutenberg-University Mainz; Mainz Germany
| | - I. Bellinghausen
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - H. Frey
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
| | - J. Saloga
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| |
Collapse
|
10
|
Abstract
Allergen-specific immunotherapy was introduced in clinical settings more than 100 years ago. It remains the only curative approach to treating allergic disorders that ameliorates symptoms, reduces medication costs, and blocks the onset of new sensitizations. Despite this clinical evidence and knowledge of some immunological mechanisms, there remain some open questions regarding the safety and efficacy of this treatment. This suggests the need for novel therapeutic approaches that attempt to reduce the dose and frequency of treatment administration, improving patient compliance, and reducing costs. In this context, the use of novel adjuvants has been proposed and, in recent years, biomedical applications using nanoparticles have been exploited in the attempt to find formulations with improved stability, bioavailability, favorable biodistribution profiles, and the capability of targeting specific cell populations. In this article, we review some of the most relevant regulatory aspects and challenges concerning nanoparticle-based formulations with immunomodulatory potential, their related immunosafety issues, and the nature of the nanoparticles most widely employed in the allergy field. Furthermore, we report in vitro and in vivo data published using allergen/nanoparticle systems, discuss their impact on the immune system in terms of immunomodulatory activity and the reduction of side effects, and show that this strategy is a novel and promising tool for the development of allergy vaccines.
Collapse
Affiliation(s)
- Gabriella Di Felice
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Paolo Colombo
- Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy
| |
Collapse
|
11
|
Himly M, Mills-Goodlet R, Geppert M, Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front Immunol 2017; 8:471. [PMID: 28487697 PMCID: PMC5403887 DOI: 10.3389/fimmu.2017.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
12
|
Scheiblhofer S, Machado Y, Feinle A, Thalhamer J, Hüsing N, Weiss R. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform. Expert Opin Drug Deliv 2016; 13:1777-1788. [PMID: 27321476 DOI: 10.1080/17425247.2016.1203898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Yoan Machado
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Andrea Feinle
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Josef Thalhamer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Nicola Hüsing
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Richard Weiss
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| |
Collapse
|
13
|
Radauer-Preiml I, Andosch A, Hawranek T, Luetz-Meindl U, Wiederstein M, Horejs-Hoeck J, Himly M, Boyles M, Duschl A. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part Fibre Toxicol 2016; 13:3. [PMID: 26772182 PMCID: PMC4715273 DOI: 10.1186/s12989-016-0113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023] Open
Abstract
Background Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule ‘corona’. Hence, the ‘corona’ defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Methods Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. Results The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. Conclusion In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0113-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Radauer-Preiml
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Ancuela Andosch
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Thomas Hawranek
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria.
| | - Ursula Luetz-Meindl
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Markus Wiederstein
- Department of Molecular Biology, Division of Structural Biology and Bioinformatics, University of Salzburg, Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Martin Himly
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | | | - Albert Duschl
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| |
Collapse
|
14
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
15
|
Pohlit H, Bellinghausen I, Schömer M, Heydenreich B, Saloga J, Frey H. Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release. Biomacromolecules 2015; 16:3103-11. [PMID: 26324124 DOI: 10.1021/acs.biomac.5b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last decades, the number of allergic patients has increased dramatically. Allergen-specific immunotherapy (SIT) is the only available cause-oriented therapy so far. SIT reduces the allergic symptoms, but also exhibits some disadvantages; that is, it is a long-lasting procedure and severe side effects like anaphylactic shock can occur. In this work, we introduce a method to encapsulate allergens into nanoparticles to avoid severe side effects during SIT. Degradable nanocarriers combine the advantage of providing a physical barrier between the encapsulated cargo and the biological environment as well as responding to certain local stimuli (like pH) to release their cargo. This work introduces a facile strategy for the synthesis of acid-labile poly(ethylene glycol) (PEG)-macromonomers that degrade at pH 5 (physiological pH inside the endolysosome) and can be used for nanocarrier synthesis. The difunctional, water-soluble PEG dimethacrylate (PEG-acetal-DMA) macromonomers with cleavable acetal units were analyzed with 1H NMR, SEC, and MALDI-ToF-MS. Both the allergen and the macromonomers were entrapped inside liposomes as templates, which were produced by dual centrifugation (DAC). Radical polymerization of the methacrylate units inside the liposomes generated allergen-loaded PEG nanocarriers. In vitro studies demonstrated that dendritic cells (DCs) internalize the protein-loaded, nontoxic PEG-nanocarriers. Furthermore, we demonstrate by cellular antigen stimulation tests that the nanocarriers effectively shield the allergen cargo from detection by immunoglobulins on the surface of basophilic leucocytes. Uptake of nanocarriers into DCs does not lead to cell maturation; however, the internalized allergen was capable to induce T cell immune responses.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany.,Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Martina Schömer
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bärbel Heydenreich
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
16
|
Gamazo C, Gastaminza G, Ferrer M, Sanz ML, Irache JM. Nanoparticle based-immunotherapy against allergy. Immunotherapy 2014; 6:885-97. [DOI: 10.2217/imt.14.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases are one of the most prevalent diseases, reaching epidemic proportions in developed countries. An allergic reaction occurs after contact with an environmental protein, such as inhalants allergens (pollen, animal dander, house dust mites), or food proteins. This response is known as part of the type 2 immunity that is counterbalanced by Type 1 immunity and Tregs. Widely used allergen-specific immunotherapy (IT) is a long term treatment to induce such switch from Th2 to Th1 response. However, conventional IT requires multiple allergen injections over a long period of time and is not free of risk of producing allergic reactions. As a consequence, new safer and faster immunotherapeutic methods are required. This review deals with allergen IT using nanoparticles as allergen delivery system that will allow a different way of administration, reduce dose and diminish allergen exposure to IgE bound to mast cells or basophils.
Collapse
Affiliation(s)
- Carlos Gamazo
- University of Navarra Dept. Microbiology C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Gabriel Gastaminza
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - Marta Ferrer
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - María L Sanz
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - Juan M Irache
- University of Navarra Dept. Pharmacy & Pharmaceutical Technology C/Irunlarrea, 1; 31080 – Pamplona, Spain
| |
Collapse
|
17
|
Immunogenicity of peanut proteins containing poly(anhydride) nanoparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1106-12. [PMID: 24899075 DOI: 10.1128/cvi.00359-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced T(H)1 and T(H)2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic T(H)2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both T(H)1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-T(H)1 immune response.
Collapse
|
18
|
An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. Int J Pharm 2014; 465:275-83. [DOI: 10.1016/j.ijpharm.2014.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 01/24/2023]
|
19
|
Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol 2012; 12:658-64. [DOI: 10.1097/aci.0b013e3283588c57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Rebouças JDS, Irache JM, Camacho AI, Esparza I, del Pozo V, Sanz ML, Ferrer M, Gamazo C. Development of poly(anhydride) nanoparticles loaded with peanut proteins: The influence of preparation method on the immunogenic properties. Eur J Pharm Biopharm 2012; 82:241-9. [DOI: 10.1016/j.ejpb.2012.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/31/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
21
|
Martins RDC, Irache JM, Gamazo C. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines 2012; 11:87-95. [PMID: 22149711 DOI: 10.1586/erv.11.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovine brucellosis is a very contagious zoonotic disease distributed worldwide and constitutes a very important zoosanitary and economic problem. The control of the disease includes animal vaccination and slaughter of infected flocks. However, the commercially available vaccine in most countries is based on the attenuated strain Brucella melitensis Rev 1, which presents important safety drawbacks. This review is focused on the most recent and promising acellular vaccine proposals.
Collapse
Affiliation(s)
- Raquel Da Costa Martins
- Department of Pharmaceutics and Pharmaceutical Technology, University of Navarra, C/Irunlarrea, 1 31008-Pamplona, Spain
| | | | | |
Collapse
|
22
|
De Souza Rebouças J, Esparza I, Ferrer M, Sanz ML, Irache JM, Gamazo C. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012; 2012:474605. [PMID: 22496608 PMCID: PMC3303624 DOI: 10.1155/2012/474605] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 12/21/2022] Open
Abstract
In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines.
Collapse
Affiliation(s)
- Juliana De Souza Rebouças
- Adjuvant Unit, Department of Pharmacy and Pharmaceutical Technology, and Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | - Irene Esparza
- Adjuvant Unit, Department of Pharmacy and Pharmaceutical Technology, and Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | - Marta Ferrer
- Department of Allergy and Clinical Immunology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Luisa Sanz
- Department of Allergy and Clinical Immunology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Adjuvant Unit, Department of Pharmacy and Pharmaceutical Technology, and Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Adjuvant Unit, Department of Pharmacy and Pharmaceutical Technology, and Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Trindade RA, Kiyohara PK, de Araujo PS, Bueno da Costa MH. PLGA microspheres containing bee venom proteins for preventive immunotherapy. Int J Pharm 2012; 423:124-33. [DOI: 10.1016/j.ijpharm.2011.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
24
|
Bondì ML, Montana G, Craparo EF, Di Gesù R, Giammona G, Bonura A, Colombo P. Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2. Int J Nanomedicine 2011; 6:2953-62. [PMID: 22162654 PMCID: PMC3230564 DOI: 10.2147/ijn.s24264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Parietaria pollen is one of the major causes of allergic reaction in southern Europe, affecting about 30% of all allergic patients in this area. Specific immunotherapy is the only treatment able to modify the natural outcome of the disease by restoring a normal immunity against allergens. The preparation of allergen-solid lipid nanoparticles as delivery vehicles for therapeutic proteins, P. judaica major allergen Par j 2, was investigated. The Par j 2 allergen was expressed in a large amount in Escherichia coli and purified to homogeneity. Its immunological properties were studied by western blotting and enzyme-linked immunosorbent assay inhibition. Solid lipid nanoparticles were obtained by water-in-oil-in-water multiple emulsion method and characterized in terms of mean size and surface charge. These systems (approximately 250 nm diameter and negative surface charge) incorporated recombinant Par j 2 with 40% or greater efficiency. Moreover, the endotoxin level and anaphylactic activity of the empty solid lipid nanoparticles and recombinant Par j 2-loaded solid lipid nanoparticles were evaluated by looking at the overexpression of CD203c marker on human basophils. These results demonstrate that recombinant Par j 2-nanoparticles could be proposed as safe compositions for the development of new therapeutic dosage forms to cure allergic reactions.
Collapse
Affiliation(s)
- Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Influence of polymer hydrolysis on adjuvant effect of Gantrez®AN nanoparticles: Implications for oral vaccination. Eur J Pharm Biopharm 2011; 79:392-8. [DOI: 10.1016/j.ejpb.2011.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
|
26
|
Carbohydrate modified ultrafine ceramic nanoparticles for allergen immunotherapy. Int Immunopharmacol 2011; 11:925-31. [DOI: 10.1016/j.intimp.2011.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 11/23/2022]
|
27
|
|
28
|
Moingeon P, Lombardi V, Saint-Lu N, Tourdot S, Bodo V, Mascarell L. Adjuvants and Vector Systems for Allergy Vaccines. Immunol Allergy Clin North Am 2011; 31:407-19, xii. [DOI: 10.1016/j.iac.2011.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9:1095-107. [PMID: 20822351 DOI: 10.1586/erv.10.89] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of novel immune adjuvants is emerging as a significant area of vaccine delivery based on the continued necessity to amplify immune responses to a wide array of new antigens that are poorly immunogenic. This article specifically focuses on the application of nanoparticles and microparticles as vaccine adjuvants. Many investigators are in agreement that the size of the particles is crucial to their adjuvant activities. However, reports on correlating the size of particle-based adjuvants and the resultant immune responses have been conflicting, with investigators on both sides of the fence with impressive data in support of the effectiveness of particles with small sizes (submicron) over those with larger sizes (micron) and vice versa, while other investigators reported data that showed submicron- and micron-sized particles are effective to the same degree as immune adjuvants. We have generated a list of biological, immunological and, more importantly, vaccine formulation parameters that may have contributed to the inconsistency from different studies and made recommendations on future studies attempting to correlate the size of particulate adjuvants and the immune responses induced. The information gathered could lead to strategies to optimize the performance of nano-microparticles as immune adjuvants.
Collapse
Affiliation(s)
- Moses O Oyewumi
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA.
| | | | | |
Collapse
|
30
|
Da Costa Martins R, Irache JM, Blasco JM, Muñoz MP, Marín CM, Jesús Grilló M, Jesús De Miguel M, Barberán M, Gamazo C. Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine 2010; 28:3038-46. [DOI: 10.1016/j.vaccine.2009.10.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 02/02/2023]
|