1
|
Ataide MA, Manin GZ, Oliveira SS, Guerra RO, Zamboni DS. Inflammasome activation and CCR2-mediated monocyte-derived dendritic cell recruitment restrict Legionella pneumophila infection. Eur J Immunol 2023; 53:e2249985. [PMID: 36427489 DOI: 10.1002/eji.202249985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.
Collapse
Affiliation(s)
- Marco A Ataide
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziele Z Manin
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel S Oliveira
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rhanoica O Guerra
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
3
|
Schetters STT, Kruijssen LJW, Crommentuijn MHW, Kalay H, Ochando J, den Haan JMM, Garcia-Vallejo JJ, van Kooyk Y. Mouse DC-SIGN/CD209a as Target for Antigen Delivery and Adaptive Immunity. Front Immunol 2018; 9:990. [PMID: 29867967 PMCID: PMC5949514 DOI: 10.3389/fimmu.2018.00990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/20/2018] [Indexed: 12/29/2022] Open
Abstract
The efficacy of vaccination studies aimed at targeting antigens to human DC-SIGN (hDC-SIGN) have been notoriously difficult to study in vivo, as eight dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) homologs have been described in mice. CD209a/SIGNR5 has been coined as the mouse DC-SIGN (mDC-SIGN) ortholog, based on its expression and location in the genome. Nonetheless, which properties of hDC-SIGN are covered by mDC-SIGN is poorly investigated. One of the most important functions of DC-SIGN is the induction of adaptive immunity. As such, the aim of this study is to determine the capability of mDC-SIGN to induce adaptive immune responses. Here, we show that mDC-SIGN is expressed on GM-CSF cultured bone marrow-derived dendritic cells (BMDCs) and macrophages. However, mDC-SIGN is an internalizing receptor which, unlike hDC-SIGN, quickly resurfaces after internalization. Binding of OVA-coupled anti-mDC-SIGN antibody by BMDCs leads to quick internalization, processing, and presentation to antigen-specific CD8+ and CD4+ T cells, which can be boosted using the TLR4 ligand, monophosphoryl lipid A. In the homeostatic condition, mDC-SIGN is mostly expressed on myeloid cells in the skin and spleen. A subcutaneous injection of fluorescent anti-mDC-SIGN reveals specific targeting to mDC-SIGN+ skin dendritic cells (DCs) and monocyte-derived DCs in situ. A subcutaneous vaccination strategy containing OVA-coupled anti-mDC-SIGN antibody generated antigen-specific polyfunctional CD8+ T cell and CD4+ T cell responses and a strong isotype-switched OVA-specific antibody response in vivo. We conclude that mDC-SIGN shows partly overlapping similarities to hDC-SIGN and that targeting mDC-SIGN provides a valuable approach to investigate the immunological function of DC-SIGN in vivo.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Laura J W Kruijssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Matheus H W Crommentuijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jordi Ochando
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
4
|
Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, Ohkawa Y, Yokomizo T. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS One 2017; 12:e0185133. [PMID: 28922396 PMCID: PMC5602668 DOI: 10.1371/journal.pone.0185133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023] Open
Abstract
Leukotriene B4 (LTB4) receptor 1 (BLT1) is a G protein-coupled receptor expressed in various leukocyte subsets; however, the precise expression of mouse BLT1 (mBLT1) has not been reported because a mBLT1 monoclonal antibody (mAb) has not been available. In this study, we present the successful establishment of a hybridoma cell line (clone 7A8) that produces a high-affinity mAb for mBLT1 by direct immunization of BLT1-deficient mice with mBLT1-overexpressing cells. The specificity of clone 7A8 was confirmed using mBLT1-overexpressing cells and mouse peripheral blood leukocytes that endogenously express BLT1. Clone 7A8 did not cross-react with human BLT1 or other G protein-coupled receptors, including human chemokine (C-X-C motif) receptor 4. The 7A8 mAb binds to the second extracellular loop of mBLT1 and did not affect LTB4 binding or intracellular calcium mobilization by LTB4. The 7A8 mAb positively stained Gr-1-positive granulocytes, CD11b-positive granulocytes/monocytes, F4/80-positive monocytes, CCR2-high and CCR2-low monocyte subsets in the peripheral blood and a CD4-positive T cell subset, Th1 cells differentiated in vitro from naïve CD4-positive T cells. This mAb was able to detect Gr-1-positive granulocytes and monocytes in the spleens of naïve mice by immunohistochemistry. Finally, intraperitoneal administration of 7A8 mAb depleted granulocytes and monocytes in the peripheral blood. We have therefore succeeded in generating a high-affinity anti-mBLT1 mAb that is useful for analyzing mBLT1 expression in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- CHO Cells
- Calcium Signaling/drug effects
- Cell Differentiation/immunology
- Cricetinae
- Cricetulus
- Granulocytes/immunology
- Leukotriene B4/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Monocytes/immunology
- Protein Structure, Secondary
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/chemistry
- Receptors, Leukotriene B4/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Yan X, Li W, Pan L, Fu E, Xie Y, Chen M, Mu D. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion. J Cell Biochem 2015; 117:1158-66. [PMID: 26447454 DOI: 10.1002/jcb.25399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion.
Collapse
Affiliation(s)
- Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Lei Pan
- Department of Respiration Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Enqing Fu
- Department of Respiration Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Yonghong Xie
- Department of Respiration Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Min Chen
- Department of Respiration Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Deguang Mu
- Department of Respiration Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| |
Collapse
|
6
|
DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity 2015; 42:1143-58. [PMID: 26070485 DOI: 10.1016/j.immuni.2015.05.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 02/06/2015] [Accepted: 04/06/2015] [Indexed: 11/23/2022]
Abstract
Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.
Collapse
|
7
|
Ramos MIP, Karpus ON, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis. Ann Rheum Dis 2015; 74:211-9. [PMID: 24064002 DOI: 10.1136/annrheumdis-2013-203371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Comprehending the mechanisms that regulate activation of autoreactive T cells and B cell antibody production is fundamental for understanding the breakdown in self-tolerance and development of autoimmunity. Here we studied the role of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling in the pathogenesis of collagen-induced arthritis (CIA). METHODS CIA was induced in mice lacking Flt3L (Flt3L(-/-)) and wild-type (WT) littermates (C57/BL6, 8-10 weeks old). Mice were killed in the initial phase (acute phase: experiment 1) and late phase (chronic phase: experiment 2) of the disease. Arthritis severity was assessed using a semiquantitative scoring system (0-4), and histological analysis of cellular infiltration, cartilage destruction and peptidoglycan loss was performed. Phenotypic and functional analysis of T and B cells, FoxP3 expression, activation and lymphocyte costimulatory markers, and cytokine production were performed ex vivo by flow cytometry in lymph nodes. Serum collagen type II (CII)-specific antibodies were measured by ELISA. RESULTS Flt3L(-/-) mice showed a marked decrease in clinical arthritis scores and incidence of arthritis in both acute and chronic phases of CIA compared with WT mice. Moreover, decreased synovial inflammation and joint destruction was observed. Both the magnitude and quality of T cell responses were altered in Flt3L(-/-). In the acute phase, the amount of CII-specific IgG2a antibodies was lower in Flt3L(-/-) than WT mice. CONCLUSIONS These results strongly suggest a role for Flt3L signalling in the development of arthritis.
Collapse
Affiliation(s)
- M I P Ramos
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - O N Karpus
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - P Broekstra
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S Aarrass
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S E Jacobsen
- Haematopoietic Stem Cell Laboratory and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands University of Cambridge, UK and GlaxoSmithKline, Stevenage, UK
| | - M C Lebre
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Park CG. Vaccine strategies utilizing C-type lectin receptors on dendritic cells in vivo. Clin Exp Vaccine Res 2014; 3:149-54. [PMID: 25003088 PMCID: PMC4083067 DOI: 10.7774/cevr.2014.3.2.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/26/2014] [Accepted: 03/30/2014] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells capable of initiating and regulating innate and adaptive immunity. The development of effective ways to produce a large number of DCs in laboratories made the use of DCs available in various vaccine approaches. Compared to conventional vaccines, focused on protective antibody responses, DC vaccines emphasize protective T cell immunity but might elicit strong antibody responses as well. In addition, the recent discoveries of functionally distinct DC subsets in various organs and tissues are likely to increase the potential of exploiting DCs in vaccines and immunotherapy. Vaccines composed of DCs generated ex vivo, pulsed with antigens, and matured prior to being re-infused to the body have been widely tried clinically but resulted in limited success due to various obstacles. In this review, new approaches that protein vaccines are selectively targeted to the endocytic C-type lectin receptors on surface of DCs in vivo are discussed.
Collapse
Affiliation(s)
- Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Davidson MG, Alonso MN, Kenkel JA, Suhoski MM, González JC, Yuan R, Engleman EG. In vivo T cell activation induces the formation of CD209(+) PDL-2(+) dendritic cells. PLoS One 2013; 8:e76258. [PMID: 24098455 PMCID: PMC3788745 DOI: 10.1371/journal.pone.0076258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023] Open
Abstract
Two critical functions of dendritic cells (DC) are to activate and functionally polarize T cells. Activated T cells can, in turn, influence DC maturation, although their effect on de novo DC development is poorly understood. Here we report that activation of T cells in mice, with either an anti-CD3 antibody or super antigen, drives the rapid formation of CD209(+)CD11b(+)CD11c(+) MHC II(+) DC from monocytic precursors (Mo-DC). GM-CSF is produced by T cells following activation, but surprisingly, it is not required for the formation of CD209(+) Mo-DC. CD40L, however, is critical for the full induction of Mo-DC following T cell activation. T cell induced CD209(+) Mo-DC are comparable to conventional CD209(-) DC in their ability to stimulate T cell proliferation. However, in contrast to conventional CD209(-) DC, CD209(+) Mo-DC fail to effectively polarize T cells, as indicated by a paucity of T cell cytokine production. The inability of CD209(+) Mo-DC to polarize T cells is partly explained by increased expression of PDL-2, since blockade of this molecule restores some polarizing capacity to the Mo-DC. These findings expand the range of signals capable of driving Mo-DC differentiation in vivo beyond exogenous microbial factors to include endogenous factors produced following T cell activation.
Collapse
Affiliation(s)
- Matthew G. Davidson
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Michael N. Alonso
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Justin A. Kenkel
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Megan M. Suhoski
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Joseph C. González
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Robert Yuan
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, California, United States of America
| |
Collapse
|
10
|
Alberts-Grill N, Denning TL, Rezvan A, Jo H. The role of the vascular dendritic cell network in atherosclerosis. Am J Physiol Cell Physiol 2013; 305:C1-21. [PMID: 23552284 DOI: 10.1152/ajpcell.00017.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based "atherosclerosis vaccine" therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
11
|
PE-Cy5.5 conjugates bind to the cells expressing mouse DEC205/CD205. J Immunol Methods 2012; 384:184-90. [PMID: 22841832 DOI: 10.1016/j.jim.2012.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/11/2023]
Abstract
DEC205/CD205, an endocytic receptor of C-type multilectin, is expressed highly in dendritic cells (DCs). DEC205 was shown to efficiently deliver vaccine antigens in surrogate ligands to the antigen processing and presentation machinery of DCs, which resulted in the development of DC-targeted vaccines employing anti-DC monoclonal antibodies (mAbs). During our studies to characterize a variety of anti-DC mAbs including anti-DEC205 by flow cytometric analysis, we discovered that a secondary anti-immunoglobulin antibody conjugated with PE-Cy5.5 bound strongly to the cells expressing mouse DEC205 (mDEC205) without incubation of a primary anti-mDEC205 mAb. In the present study we demonstrate that various antibodies and streptavidin conjugated with PE-Cy5.5 bind to the mDEC205-expressing cells including CHO, KIT6, and HEK293 cells. The interaction between the PE-Cy5.5 conjugates and the cells expressing mDEC205 appears distinctive, since none of the PE-Cy5.5 conjugates bind to the cells that express human DEC205 on surface. Besides, only PE-Cy5.5 conjugates bind strongly to mDEC205-expressing cells; PerCP-Cy5.5, APC-Cy5.5, and Cy5.5 conjugates bind weakly; PE, PE-Cy5, Cy5, FITC, or Alexa488 conjugates do not bind to mDEC205-expressing cells. Therefore the use of PE-Cy5.5 conjugates, widely utilized in multicolor flow cytometry, requires precaution against nonspecific binding to mDEC205-positive cells.
Collapse
|
12
|
Park CG, Rodriguez A, Ueta H, Lee H, Pack M, Matsuno K, Steinman RM. Generation of anti-human DEC205/CD205 monoclonal antibodies that recognize epitopes conserved in different mammals. J Immunol Methods 2012; 377:15-22. [PMID: 22273672 DOI: 10.1016/j.jim.2011.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022]
Abstract
DEC205/CD205 is a C-type multilectin receptor, expressed highly in dendritic cells (DCs). Previous efforts to generate anti-human DEC205 (anti-hDEC205) monoclonal antibodies (mAbs) from mice immunized with subdomain proteins of hDEC205 resulted in a few mAbs. Recently, we expressed and utilized a full-length extracellular domain protein of hDEC205 to successfully generate 5 strong anti-hDEC205 mAbs from mice. In this study, DEC205 knockout (KO) mice were immunized with this full-length extracellular domain protein of hDEC205. One of the 3 immunized DEC205 KO mice was chosen for the highest anti-hDEC205 titer by flow cytometric analysis of serum samples on CHO cells stably expressing hDEC205 (CHO/hDEC205 cells) and used for hybridoma fusion. From a single fusion, more than 400 anti-hDEC205 hybridomas were identified by flow cytometric screen with CHO/hDEC205 cells, and a total of 115 hybridomas secreting strong anti-hDEC205 mAb were saved and named HD1 through HD115. To characterize in detail, 10 HD mAbs were chosen for superior anti-hDEC205 reactivity and further subjected to cloning and purification. Interestingly, out of those 10 chosen anti-hDEC205 HD mAbs, 5 mAbs were also strongly reactive to mouse DEC205 while 8 mAbs were found to stain DEC205(+) DCs on monkey spleen sections. In addition, we also identified that HD83, one of the 10 chosen HD mAbs, stains DEC205(+) DCs in rat spleen and lymph node. Therefore, by immunizing DEC205 KO mice with a full-length extracellular domain protein of hDEC205, we generated a large number of strong anti-hDEC205 mAbs many of which are cross-species reactive and able to visualize DEC205(+) DCs in lymphoid tissues of other mammals.
Collapse
Affiliation(s)
- Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Choi JH, Cheong C, Dandamudi DB, Park CG, Rodriguez A, Mehandru S, Velinzon K, Jung IH, Yoo JY, Oh GT, Steinman RM. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 2011; 35:819-31. [PMID: 22078798 DOI: 10.1016/j.immuni.2011.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/14/2011] [Accepted: 09/07/2011] [Indexed: 01/26/2023]
Abstract
Early events in atherosclerosis occur in the aortic intima and involve monocytes that become macrophages. We looked for these cells in the steady state adult mouse aorta, and surprisingly, we found a dominance of dendritic cells (DCs) in the intima. In contrast to aortic adventitial macrophages, CD11c(+)MHC II(hi) DCs were poorly phagocytic but were immune stimulatory. DCs were of two types primarily: classical Flt3-Flt3L signaling-dependent, CD103(+)CD11b(-) DCs and macrophage-colony stimulating factor (M-CSF)-dependent, CD14(+)CD11b(+)DC-SIGN(+) monocyte-derived DCs. Both types expanded during atherosclerosis. By crossing Flt3(-/-) to Ldlr(-/-) atherosclerosis-prone mice, we developed a selective and marked deficiency of classical CD103(+) aortic DCs, and they were associated with exacerbated atherosclerosis without alterations in blood lipids. Concomitantly, the Flt3(-/-)Ldlr(-/-) mice had fewer Foxp3(+) Treg cells and increased inflammatory cytokine mRNAs in the aorta. Therefore, functional DCs are dominant in normal aortic intima and, in contrast to macrophages, CD103(+) classical DCs are associated with atherosclerosis protection.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 2011; 475:110-3. [PMID: 21685887 DOI: 10.1038/nature10134] [Citation(s) in RCA: 488] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/20/2011] [Indexed: 12/11/2022]
Abstract
High-dose intravenous immunoglobulin is a widely used therapeutic preparation of highly purified immunoglobulin G (IgG) antibodies. It is administered at high doses (1-2 grams per kilogram) for the suppression of autoantibody-triggered inflammation in a variety of clinical settings. This anti-inflammatory activity of intravenous immunoglobulin is triggered by a minor population of IgG crystallizable fragments (Fcs), with glycans terminating in α2,6 sialic acids (sFc) that target myeloid regulatory cells expressing the lectin dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN; also known as CD209). Here, to characterize this response in detail, we generated humanized DC-SIGN mice (hDC-SIGN), and demonstrate that the anti-inflammatory activity of intravenous immunoglobulin can be recapitulated by the transfer of bone-marrow-derived sFc-treated hDC-SIGN(+) macrophages or dendritic cells into naive recipients. Furthermore, sFc administration results in the production of IL-33, which, in turn, induces expansion of IL-4-producing basophils that promote increased expression of the inhibitory Fc receptor FcγRIIB on effector macrophages. Systemic administration of the T(H)2 cytokines IL-33 or IL-4 upregulates FcγRIIB on macrophages, and suppresses serum-induced arthritis. Consistent with these results, transfer of IL-33-treated basophils suppressed induced arthritic inflammation. This novel DC-SIGN-T(H)2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.
Collapse
Affiliation(s)
- Robert M Anthony
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
15
|
Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman RM. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 2010; 143:416-29. [PMID: 21029863 DOI: 10.1016/j.cell.2010.09.039] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/10/2010] [Accepted: 09/23/2010] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), critical antigen-presenting cells for immune control, normally derive from bone marrow precursors distinct from monocytes. It is not yet established if the large reservoir of monocytes can develop into cells with critical features of DCs in vivo. We now show that fully differentiated monocyte-derived DCs (Mo-DCs) develop in mice and DC-SIGN/CD209a marks the cells. Mo-DCs are recruited from blood monocytes into lymph nodes by lipopolysaccharide and live or dead gram-negative bacteria. Mobilization requires TLR4 and its CD14 coreceptor and Trif. When tested for antigen-presenting function, Mo-DCs are as active as classical DCs, including cross-presentation of proteins and live gram-negative bacteria on MHC I in vivo. Fully differentiated Mo-DCs acquire DC morphology and localize to T cell areas via L-selectin and CCR7. Thus the blood monocyte reservoir becomes the dominant presenting cell in response to select microbes, yielding DC-SIGN(+) cells with critical functions of DCs.
Collapse
Affiliation(s)
- Cheolho Cheong
- Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|