1
|
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G, Liu YQ. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther 2017; 18:833-840. [PMID: 29144842 DOI: 10.1080/15384047.2017.1395115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of cancer; however, significant challenges remain. Conditionally replicating adenoviruses (CRAds), which not only kill cancer cells, but also serve as vectors to express therapeutic genes, are a novel and effective method to treat cancer. However, most adenoviruses are Ad5, which infect cells through the coxsackie and adenovirus receptor (CAR). The transduction efficacy of Ad5 is restricted because of the absent or low expression of CAR on several cancer cells. Ad serotype 35 has a different tropism pattern to Ad5. Ad35 attaches to cells via a non-CAR receptor, CD46, which is expressed widely on most tumor cells. Thus, chimeric adenoviral vectors consisting of the knob and shaft of Ad35 combined with Ad5 have been constructed. The chimeric fiber adenoviral vectors can transduce CAR-positive and CAR-negative cell lines. In this review, we explore the application of the novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 in tumor therapy in terms of safety, mechanism, transduction efficacy, and antitumor effect.
Collapse
Affiliation(s)
- Ming Yang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China.,b Department of Oncology , Affiliated Nanyang Second General Hospital , Nanyang , China
| | - Chun Sheng Yang
- c Department of Dermatology , Affiliated Huai'an Hospital of Xuzhou Medical University , the Second People's Hospital of Huai'an, Huai'an , China
| | - WenWen Guo
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - JianQin Tang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Qian Huang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - ShouXin Feng
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - AiJun Jiang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - XiFeng Xu
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guan Jiang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Yan Qun Liu
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
2
|
Rieder FJJ, Kastner MT, Hartl M, Puchinger MG, Schneider M, Majdic O, Britt WJ, Djinović-Carugo K, Steininger C. Human cytomegalovirus phosphoproteins are hypophosphorylated and intrinsically disordered. J Gen Virol 2017; 98:471-485. [PMID: 27959783 DOI: 10.1099/jgv.0.000675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphorylation has important regulatory functions in cell homeostasis and is tightly regulated by kinases and phosphatases. The tegument of human cytomegalovirus (CMV) contains not only several proteins reported to be extensively phosphorylated but also cellular protein phosphatases (PP1 and PP2A). To investigate this apparent inconsistency, we evaluated the phosphorylation status of the tegument proteins pUL32 and pp65 by enzymatic dephosphorylation and MS. Enzymatic dephosphorylation with bacterial λ phosphatase, but not with PP1, shifted the pUL32-specific signal on reducing SDS-PAGE from ~150 to ~148 kDa, a mass still much larger than the ~118 kDa obtained from our diffusion studies and from the calculated protein mass of ~113 kDa. Remarkably, inhibition of phosphatases through treatment with the phosphatase inhibitors calyculin A and okadaic acid resulted in a shift to ~190 or ~180 kDa, respectively, indicating that a considerable number of potential phosphorylated residues on pUL32 are not phosphorylated under normal conditions. MS revealed a general state of hypophosphorylation of CMV phosphoproteins with only 17 phosphorylated residues detected on pUL32 and 19 on pp65, respectively. Moreover, bioinformatics analysis shows that the C-terminal two-thirds of pUL32 are intrinsically disordered and that most phosphorylations map to this region. In conclusion, we show that important CMV tegument proteins are indeed phosphorylated, though to a lesser extent than previously reported, and the difference in mobility on SDS-PAGE and calculated mass of pUL32 may not be attributed to phosphorylation but more likely due to the partially intrinsically disordered nature of pUL32.
Collapse
Affiliation(s)
- Franz J J Rieder
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Marie-Theres Kastner
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Vienna Biocenter, Vienna, Austria
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Martina Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - William J Britt
- Department of Pediatrics, Children's Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina Djinović-Carugo
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.,Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Girkin JL, Hatchwell LM, Collison AM, Starkey MR, Hansbro PM, Yagita H, Foster PS, Mattes J. TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection. Am J Physiol Lung Cell Mol Physiol 2016; 312:L89-L99. [PMID: 27836899 DOI: 10.1152/ajplung.00200.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
the aim of this study is to elucidate the role of TRAIL during rhinovirus (RV) infection in vivo. Naïve wild-type and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-deficient (Tnfsf10-/-) BALB/c mice were infected intranasally with RV1B. In separate experiments, Tnfsf10-/- mice were sensitized and challenged via the airway route with house dust mite (HDM) to induce allergic airways disease and then challenged with RVIB or UV-RVIB. Airway hyperreactivity (AHR) was invasively assessed as total airways resistance in response to increasing methacholine challenge and inflammation was assessed in bronchoalveolar lavage fluid at multiple time points postinfection. Chemokines were quantified by ELISA of whole lung lysates and viral load was determined by quantitative RT-PCR and tissue culture infective dose (TCID50). Human airway epithelial cells (BEAS2B) were infected with RV1B and stimulated with recombinant TRAIL or neutralizing anti-TRAIL antibodies and viral titer assessed by TCID50 HDM-challenged Tnfsf10-/- mice were protected against RV-induced AHR and had suppressed cellular infiltration in the airways upon RV infection. Chemokine C-X-C-motif ligand 2 (CXCL2) production was suppressed in naïve Tnfsf10-/- mice infected with RV1B, with less RV1B detected 24 h postinfection. This was associated with reduced apoptotic cell death and a reduction of interferon (IFN)-λ2/3 but not IFN-α or IFN-β. TRAIL stimulation increased, whereas anti-TRAIL antibodies reduced viral replication in RV1B-infected BEAS2B cells in vitro. In conclusion, TRAIL promotes RV-induced AHR, inflammation and RV1B replication, implicating this molecule and its downstream signaling pathways as a possible target for the amelioration of RV1B-induced allergic and nonallergic lung inflammation and AHR.
Collapse
Affiliation(s)
- Jason L Girkin
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Luke M Hatchwell
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Adam M Collison
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Microbiology, Asthma, and Airways Research Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Microbiology, Asthma, and Airways Research Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University, School of Medicine, Tokyo, Japan; and
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; .,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Paediatric Respiratory and Sleep Medicine Unit, John Hunter Children's Hospital, Newcastle, Australia
| |
Collapse
|
4
|
Xiong Y, Murphy M, Manavalan TT, Pattabiraman G, Qiu F, Chang HH, Ho IC, Medvedev AE. Endotoxin Tolerance Inhibits Lyn and c-Src Phosphorylation and Association with Toll-Like Receptor 4 but Increases Expression and Activity of Protein Phosphatases. J Innate Immun 2015; 8:171-84. [PMID: 26457672 DOI: 10.1159/000440838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
Endotoxin tolerance protects the host by limiting excessive 'cytokine storm' during sepsis, but compromises the ability to counteract infections in septic shock survivors. It reprograms Toll-like receptor (TLR) 4 responses by attenuating the expression of proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators, but the mechanisms of reprogramming remain unclear. In this study, we demonstrate that the induction of endotoxin tolerance in human monocytes, THP-1 and MonoMac-6 cells inhibited lipopolysaccharide (LPS)-mediated phosphorylation of Lyn, c-Src and their recruitment to TLR4, but increased total protein phosphatase (PP) activity and the expression of protein tyrosine phosphatase (PTP) 1B, PP2A, PTP nonreceptor type (PTPN) 22 and mitogen-activated protein kinase phosphatase (MKP)-1. Chemical PP inhibitors, okadaic acid, dephostatin and cantharidic acid markedly decreased or completely abolished LPS tolerance, indicating the importance of phosphatases in endotoxin tolerization. Overexpression of PTPN22 decreased LPS-mediated nuclear factor (NF)-x03BA;B activation, p38 phosphorylation and CXCL8 gene expression, while PTPN22 ablation upregulated LPS-induced p65 NF-x03BA;B and p38 phosphorylation and the expression of TNF-α and pro-IL-1β mRNA, indicating PTPN22 as an inhibitor of TLR4 signaling. Thus, LPS tolerance interferes with TLR4 signaling by inhibiting Lyn and c-Src phosphorylation and their recruitment to TLR4, while increasing the phosphatase activity and expression of PP2A, PTPN22, PTP1B and MKP1.
Collapse
Affiliation(s)
- Yanbao Xiong
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Md., USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gene therapy in B-NHL cell line using adenovirus-mediated transfer of secretable trimeric TRAIL gene expression driven by CD20 promoter. Exp Hematol 2013; 41:221-30. [DOI: 10.1016/j.exphem.2012.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 01/14/2023]
|