1
|
Yamamoto Y, Taniguchi H, Nguyen NM, Yokoyama F, Choowongkomon K, Angelini A, Horiuchi JI, Kumada Y. Development of a novel and broadly applicable sandwich ELISA assay based on rabbit single-chain variable fragments and a modified Ig-binding domain of protein L fused to a polystyrene-binding peptide. J Immunol Methods 2024; 534:113771. [PMID: 39490960 DOI: 10.1016/j.jim.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Most of currently available sandwich-type enzyme-linked immunosorbent assays (ELISA) require the use of full-length animal-derived antibodies which poses welfare criticisms and are often expensive to produce. There is therefore a strong demand for the development of more affordable and animal-free methods to produce antibodies for sandwich ELISA assay. To address these issues, we propose here the development of a new technology based on two complementary rabbit single-chain variable fragments (scFvs) and an Ig-binding domain of protein L (PpL1) fused to a polystyrene-binding peptide (PS-tag) that can be recombinantly produced in bacteria. Toward this goal, we developed a rabbit scFv capable to bind the antigen via its variable regions while engaging protein L through its constant framework domain. To enhance the density of captured scFv and enable a better solvent exposure, we generated multiple PpL1 variants bearing polystyrene-binding peptides (PS) tags fused to its ends. The tandem trimer of PpL1 variant bearing PS-tags located at the N-terminus (PpL1'-T-PSN) revealed increased antigen-binding signal when immobilized on hydrophilic polystyrene (phi-PS) plates. By CDR-grafting different antigen-binding specificities into our engineered protein L-binding scFv we validated our technology against a different antigen. Finally, to further enhance the sensitivity of our assay, we implemented a protein L-based pretreatment to remove potential inhibitory immunoglobulin often present in the blood samples. The ability to rapidly and cost-effectively generate animal-free recombinant antibody fragments that can be adsorbed and specifically oriented on plates while retaining their antigen-binding properties could lead to the development of innovative and widely applicable sandwich ELISA systems for the efficient, versatile and sensitive detection of different types of antigens.
Collapse
Affiliation(s)
- Yodai Yamamoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Haruka Taniguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Ngoc Minh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Fuki Yokoyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
2
|
Bezdekova J, Canfarotta F, Grillo F, Yesilkaya H, Vaculovicova M, Piletsky S. Molecularly imprinted nanoparticles for pathogen visualisation. NANOSCALE ADVANCES 2023; 5:2602-2609. [PMID: 37143801 PMCID: PMC10153071 DOI: 10.1039/d2na00913g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023]
Abstract
Saccharides displayed on the cell surface of pathogens play critical roles in many activities such as adhesion, recognition and pathogenesis, as well as in prokaryotic development. In this work, we report the synthesis of molecularly imprinted nanoparticles (nanoMIPs) against pathogen surface monosaccharides using an innovative solid-phase approach. These nanoMIPs can serve as robust and selective artificial lectins specific to one particular monosaccharide. The evaluation of their binding capabilities has been implemented against bacterial cells (E. coli and S. pneumoniae) as model pathogens. The nanoMIPs were produced against two different monosaccharides: mannose (Man), which is present mainly on the surface of Gram-negative bacteria, and N-acetylglucosamine (GlcNAc) exposed on the surface of the majority of bacteria. Herein, we assessed the potential use of nanoMIPs for pathogen cell imaging and detection via flow cytometry and confocal microscopy.
Collapse
Affiliation(s)
| | | | - Fabiana Grillo
- University of Leicester University Rd Leicester LE1 7RH UK
| | | | | | | |
Collapse
|
3
|
Kim KH, Lee SY, Baek JH, Lee SY, Kim JY, Yoo JS. Measuring fucosylated alpha-fetoprotein in hepatocellular carcinoma: A comparison of μTAS and parallel reaction monitoring. Proteomics Clin Appl 2021; 15:e2000096. [PMID: 33764665 DOI: 10.1002/prca.202000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Fucosylation of alpha-fetoprotein (AFP) is closely correlated with the diagnosis of patients with hepatocellular carcinoma (HCC). In current, a micro-total analysis system (μTAS) using immunoassay has been developed for determining fucosylated AFP EXPERIMENTAL DESIGN: We compared two analytical methods, μTAS and liquid chromatography-parallel reaction monitoring mass spectrometry (LC-PRM MS), for the measurement of fucosylated AFP in serum to evaluate the usefulness of the results. For this purpose, serum samples were used (cirrhosis, n = 105; HCC, n = 105), and we have discussed the analytical performance of these two methods RESULTS: We observed a correlation (R2 = 0.84) between LC-PRM MS and μTAS using samples where fucosylated levels were measured by both methods. The fucosylated level of AFP by LC-PRM MS better differentiated between cirrhosis and HCC patients than those by μTAS (AUC = 0.910 vs. 0.861), particularly in subgroups with a level of total AFP < 20 ng/mL (0.973 vs. 0.874) and in early stage (I and II) patients (0.922 vs. 0.835) CONCLUSIONS AND CLINICAL RELEVANCE: From this comparative study we can suggest that the LC-PRM MS is applicable in the measurement of fucosylated AFP from human serum and is more useful for early diagnosis of HCC. CLINICAL RELEVANCE Fucosylation of AFP is used for the detection of HCC. A micro-total analysis system (μTAS) has been only developed for measuring fucosylation of AFP in clinical research. This study reports the fucosylation of AFP in human serum samples from cirrhosis and HCC patients using the μTAS and a LC-PRM MS to evaluate fucosylation of AFP from each method. As a result, LC-PRM MS is complementary to the conventional μTAS method. Furthermore, LC-PRM MS provides a higher diagnostic accuracy than the μTAS in patients with low AFP levels and an early stage.
Collapse
Affiliation(s)
- Kwang Hoe Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Yoon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Veggiani G, Giabbai B, Semrau MS, Medagli B, Riccio V, Bajc G, Storici P, de Marco A. Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expr Purif 2020; 166:105505. [DOI: 10.1016/j.pep.2019.105505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
|
6
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
SKIK-zipbody-alkaline phosphatase, a novel antibody fusion protein expressed in Escherichia coli cytoplasm. J Biosci Bioeng 2018; 126:705-709. [DOI: 10.1016/j.jbiosc.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022]
|
8
|
Kim KH, Lee SY, Hwang H, Lee JY, Ji ES, An HJ, Kim JY, Yoo JS. Direct Monitoring of Fucosylated Glycopeptides of Alpha-Fetoprotein in Human Serum for Early Hepatocellular Carcinoma by Liquid Chromatography-Tandem Mass Spectrometry with Immunoprecipitation. Proteomics Clin Appl 2018; 12:e1800062. [PMID: 29888876 DOI: 10.1002/prca.201800062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Alpha-fetoprotein (AFP) is a widely used serological marker that is associated with hepatocellular carcinoma (HCC). Although the level of AFP is increased in HCC, its sensitivity for diagnosis is poor because AFP levels are also increased in liver diseases. Changes in glycoform, especially fucosylation, have been reported to be associated with the development of HCC. EXPERIMENTAL DESIGN The authors introduce the monitoring of fucosylated glycopeptides by liquid chromatography (LC)-mass spectrometry (MS) combined with immunoprecipitation, where glycan-cleaved fragments with an amino acid sequence are used as transitions. Furthermore, neuraminidase for desialylation is useful to improve the MS detection limit (limit of detection [LOD] <2 ng mL-1 ) in 0.1 μL of serum. RESULTS The performance of the relative percentage of fucosylated AFP (AFP-fuc%) for differentiating between early HCC and cirrhosis is better than that of serum AFP levels as indicated by a greater area under the receiver operator characteristic curve (area under the curve = 0.962 vs. 0.628) and sensitivity (92.3% vs. 53.9%), respectively. Furthermore, the inter- and intraday repeatability of AFP-fuc% in serum is less than 2.1%. CONCLUSIONS AND CLINICAL RELEVANCE These findings suggest that glycopeptide-based LC-MS/MS is a promising method and that AFP-fuc% is a clinically useful parameter for differentiating between early HCC and liver cirrhosis.
Collapse
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Heeyoun Hwang
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
| | - Ju Yeon Lee
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Research Group, Korea Basic Science Institute, Cheongju, Ochang-eup, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
9
|
Liu A, Xiong Q, Shen L, Li W, Zeng Z, Li C, Liu S, Liu Y, Han G. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Mereiter S, Balmaña M, Gomes J, Magalhães A, Reis CA. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer. Front Oncol 2016; 6:55. [PMID: 27014630 PMCID: PMC4783390 DOI: 10.3389/fonc.2016.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however, with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans, and glycosphingolipids) that are involved in cancer cell adhesion, signaling, invasion, and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal, and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, and imaging mass spectrometry, and provide an outlook to future perspectives and clinical applications.
Collapse
Affiliation(s)
- Stefan Mereiter
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona , Girona , Spain
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Yadav S, Carrascosa LG, Sina AAI, Shiddiky MJA, Hill MM, Trau M. Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions. Analyst 2016; 141:2356-61. [DOI: 10.1039/c6an00528d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
New electrochemical method to detect glycosylation of protein using lectin and protein gold interaction.
Collapse
Affiliation(s)
- Sharda Yadav
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- The University of Queensland Diamantina Institute
| | - Laura G. Carrascosa
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Abu A. I. Sina
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Muhammad J. A. Shiddiky
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Michelle M. Hill
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- The University of Queensland Diamantina Institute
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Chemistry and Molecular Biosciences
| |
Collapse
|
12
|
Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi JI. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-Tag). Biotechnol Prog 2015; 31:1563-70. [DOI: 10.1002/btpr.2169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Yoichi Kumada
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Bongmun Kang
- Venture Laboratory; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Kagenari Yamakawa
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Michimasa Kishimoto
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Jun-Ichi Horiuchi
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| |
Collapse
|
13
|
Tang H, Hsueh P, Kletter D, Bern M, Haab B. The detection and discovery of glycan motifs in biological samples using lectins and antibodies: new methods and opportunities. Adv Cancer Res 2015; 126:167-202. [PMID: 25727148 DOI: 10.1016/bs.acr.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has uncovered unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents-lectins and glycan-binding antibodies-can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here, we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression.
Collapse
Affiliation(s)
- Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter Hsueh
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Brian Haab
- Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
14
|
Alteration of N-glycans and expression of their related glycogenes in the epithelial-mesenchymal transition of HCV29 bladder epithelial cells. Molecules 2014; 19:20073-90. [PMID: 25470275 PMCID: PMC6271757 DOI: 10.3390/molecules191220073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in the proliferation and metastasis of solid tumor cells, and glycosylation plays a crucial role in the EMT process. Certain aberrant glycans have been reported as biomarkers during bladder cancer progression, but global variation of N-glycans in this type of cancer has not been previously studied. We examined the profiles of N-glycan and glycogene expression in transforming growth factor-beta (TGFβ)-induced EMT using non-malignant bladder transitional epithelium HCV29 cells. These expression profiles were analyzed by mass spectrometry, lectin microarray analysis, and GlycoV4 oligonucleotide microarray analysis, and confirmed by lectin histochemistry and real-time RT-PCR. The expression of 5 N-glycan-related genes were notably altered in TGFβ-induced EMT. In particular, reduced expression of glycogene man2a1, which encodes α-mannosidase 2, contributed to the decreased proportions of bi-, tri- and tetra-antennary complex N-glycans, and increased expression of hybrid-type N-glycans. Decreased expression of fuca1 gene, which encodes Type 1 α-L-fucosidase, contributed to increased expression of fucosylated N-glycans in TGFβ-induced EMT. Taken together, these findings clearly demonstrate the involvement of aberrant N-glycan synthesis in EMT in these cells. Integrated glycomic techniques as described here will facilitate discovery of glycan markers and development of novel diagnostic and therapeutic approaches to bladder cancer.
Collapse
|
15
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
16
|
Kumada Y, Ootsuka T, Asada M, Yoshizuka S, Chiyama M, Sakane M, Fida HM, Sawada K, Okumura K, Kishimoto M. Identification and characterization of peptide fragments for the direct and site-specific immobilization of functional proteins onto the surface of silicon nitride. J Biotechnol 2014; 184:103-10. [DOI: 10.1016/j.jbiotec.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/25/2022]
|
17
|
Kumada Y, Ishikawa Y, Fujiwara Y, Takeda R, Miyamoto R, Niwa D, Momose S, Kang B, Kishimoto M. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate. J Immunol Methods 2014; 411:1-10. [PMID: 24910412 DOI: 10.1016/j.jim.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results strongly suggested that a PMMA-tag introduced at the C-terminus of scFvs preferably recognizes ester and/or carboxyl groups exposed on the surface of plastics. The scFv-PM developed in the present study has advantages such as being a ligand antibody, compared with whole Ab and the conventional PS-tag-fused scFvs (scFv-PS), and, thus, it is considerably useful in a sandwich ELISA as well as in various immuno-detection and immuno-separation systems.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan.
| | - Yasuyuki Ishikawa
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Yusuke Fujiwara
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Rui Takeda
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Ryosuke Miyamoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Daisuke Niwa
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Shun Momose
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Bongmun Kang
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Michimasa Kishimoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
18
|
Wu J, Zhu J, Yin H, Buckanovich RJ, Lubman DM. Analysis of glycan variation on glycoproteins from serum by the reverse lectin-based ELISA assay. J Proteome Res 2014; 13:2197-204. [PMID: 24575722 PMCID: PMC3993964 DOI: 10.1021/pr401061c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Altered
glycosylation in glycoproteins is associated with carcinogenesis,
and certain glycan structures and glycoproteins are well-known markers
for tumor progression. To identify potential diagnostic candidate
markers, we have developed a novel method for analysis of glycosylation
changes of glycoproteins from crude serum samples using lectin-based
glycoprotein capture followed by detection with biotin/HRP-conjugated
antibodies. The amount of lectin coated on the microplate well was
optimized to achieve low background and improved S/N compared with
current lectin ELISA methods. In the presence of competing sugars
of lectin AAL or with sialic acid removed from the glycoproteins,
we confirmed that this method specifically detects glycosylation changes
of proteins rather than protein abundance variation. Using our reverse
lectin-based ELISA assay, increased fucosylated haptoglobin was observed
in sera of patients with ovarian cancer, while the protein level of
haptoglobin remained the same between cancers and noncases. The combination
of fucosylated haptoglobin and CA125 (AUC = 0.88) showed improved
performance for distinguishing stage-III ovarian cancer from noncases
compared with CA125 alone (AUC = 0.86). In differentiating early-stage
ovarian cancer from noncases, fucosylated haptoglobin showed comparable
performance to CA125. The combination of CA125 and fucosylated haptoglobin
resulted in an AUC of 0.855, which outperforms CA125 to distinguish
early-stage cancer from noncases. Our study provides an alternative
method to quantify glycosylation changes of proteins from serum samples,
which will be essential for biomarker discovery and validation studies.
Collapse
Affiliation(s)
- Jing Wu
- University of Michigan , Department of Surgery, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
19
|
Stefan-van Staden RI, Moldoveanu I, Surdu-Bob CC, Stanciu-Gavan C. Engineered nanoporous gold microspheres for stochastic sensing. RSC Adv 2014. [DOI: 10.1039/c4ra08987a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Engineered nanoporous gold microsphere-based stochastic sensors detect carcynoembrionic antigen at a concentration as low as 16 ng mL−1 in whole blood samples.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Material Science
- Politehnica University of Bucharest
| | - Iuliana Moldoveanu
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Material Science
- Politehnica University of Bucharest
| | - Carmen Cristina Surdu-Bob
- Low Temperature Plasma Laboratory
- National Institute for Lasers
- Plasma and Radiation Physics (NILPRP)
- Magurele, Romania
| | - Camelia Stanciu-Gavan
- Department of Surgery 4
- University of Medicine and Pharmacy “Carol Davila”
- Bucharest, Romania
| |
Collapse
|
20
|
Kumada Y, Hamasaki K, Nakagawa A, Sasaki E, Shirai T, Okumura M, Inoue M, Kishimoto M. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding. J Immunol Methods 2013; 400-401:70-7. [DOI: 10.1016/j.jim.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 11/15/2022]
|