1
|
Belousov PV. Analysis of the Repertoires of Circulating Autoantibodies' Specificities as a Tool for Identification of the Tumor-Associated Antigens: Current Problems and Solutions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1225-1242. [PMID: 34903148 DOI: 10.1134/s0006297921100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/14/2023]
Abstract
Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a large variety of methods for in-depth comparative analysis of the repertoires of circulating antibodies' antigenic specificities in health and disease. Nevertheless, this research field so far has met somewhat limited clinical success, while numerous data on the repertoires of circulating autoantibodies' specificities in cancer patients are poorly integrated into the contemporary picture of the immunological and molecular landscapes of human tumors. This review is an attempt to identify and systematize the key and essentially universal conceptual and methodological limitations of analyses of the repertoires of circulating antibodies' antigenic specificities in cancer (expression bias, redundancy of TAA repertoires, identification of natural IgG, the absence of the pathogenetically relevant context in the experimental systems used to detect TAA), as well as to discuss potential and already known methodological improvements that may significantly increase the detectability of the pathogenetically relevant and diagnostically significant bona fide TAA.
Collapse
Affiliation(s)
- Pavel V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center of Endocrinology, Ministry of Health of the Russian Federation, Moscow, 117036, Russia
| |
Collapse
|
2
|
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, Ustiugova AS, Prokofjeva MM, Lanshchakov KV, Vanushko VE, Zaretsky AR, Severskaia NV, Dvinskikh NY, Abrosimov AY, Kuprash DV, Schwartz AM. Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRAS Q61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett 2019; 467:96-106. [PMID: 31326556 DOI: 10.1016/j.canlet.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Collapse
Affiliation(s)
- Pavel V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Genetics and Life Sciences, Educational Center «Sirius», Sochi, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Denis E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Lanshchakov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; Central Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow, Russia
| | - Vladimir E Vanushko
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Evrogen Lab LLC, Moscow, Russia
| | - Natalya V Severskaia
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Nina Y Dvinskikh
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexander Y Abrosimov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; National University of Science & Technology «MISIS», Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Birnbaum J, Hoke A, Lalji A, Calabresi P, Bhargava P, Casciola-Rosen L. Brief Report: Anti-Calponin 3 Autoantibodies: A Newly Identified Specificity in Patients With Sjögren's Syndrome. Arthritis Rheumatol 2018; 70:1610-1616. [PMID: 29749720 DOI: 10.1002/art.40550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/01/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Autoantibodies are clinically useful for phenotyping patients across the spectrum of autoimmune rheumatic diseases. Using serum from a patient with Sjögren's syndrome (SS), we detected a new specificity by immunoblotting. This study was undertaken to identify this autoantibody and to evaluate its disease specificity. METHODS A prominent 40-kd band was detected when immunoblotting was performed using SS patient serum and lysate from rat dorsal root ganglia (DRGs). Using 2-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry peptide sequencing, the autoantigen was identified as calponin 3. Anti-calponin 3 antibodies were evaluated in sera from patients with primary SS (n = 209), patients with systemic lupus erythematosus (SLE; n = 138), patients with myositis (n = 138), patients with multiple sclerosis (MS; n = 44), and healthy controls (n = 46) by enzyme-linked immunosorbent assay. Expression of calponin 3 was assessed by immunohistochemistry. RESULTS Calponin 3 was identified as a new autoantigen. Anti-calponin 3 antibodies were detected in 23 (11.0%) of the 209 SS patients, 12 (8.7%) of the 138 SLE patients, 7 (5.1%) of the 138 myositis patients, 3 (6.8%) of the 44 MS patients, and 1 (2.2%) of the 46 healthy controls. Among SS patients, the frequency of anti-calponin 3 antibodies was highest in those with neuropathies (7 [17.9%] of 39). In this subset, the frequency of anti-calponin 3 antibodies differed significantly from that in the control group (P = 0.02). Calponin 3 was expressed primarily in rat DRG perineuronal satellite cells but not neurons. CONCLUSION Calponin 3 is a novel autoantigen. Antibodies against this protein are found in SS and associate with the subset of patients experiencing neuropathies. Intriguingly, we found that calponin 3 is expressed in DRG perineuronal satellite cells, suggesting that these may be a target in SS.
Collapse
Affiliation(s)
| | - Ahmet Hoke
- Johns Hopkins University, Baltimore, Maryland
| | - Aliya Lalji
- Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|
4
|
Shi Q, Zhou L, Wang Y, Ma H. A Strategy for Screening Monoclonal Antibodies for Arabidopsis Flowers. FRONTIERS IN PLANT SCIENCE 2017; 8:270. [PMID: 28293248 PMCID: PMC5330178 DOI: 10.3389/fpls.2017.00270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/14/2017] [Indexed: 05/30/2023]
Abstract
The flower is one of the most complex structures of angiosperms and is essential for sexual reproduction. Current studies using molecular genetic tools have made great advances in understanding flower development. Due to the lack of available antibodies, studies investigating the localization of proteins required for flower development have been restricted to use commercial antibodies against known antigens such as GFP, YFP, and FLAG. Thus, knowledge about cellular structures in the floral organs is limited due to the scarcity of antibodies that can label cellular components. To generate monoclonal antibodies that can facilitate molecular studies of the flower, we constructed a library of monoclonal antibodies against antigenic proteins from Arabidopsis inflorescences and identified 61 monoclonal antibodies. Twenty-four of these monoclonal antibodies displayed a unique band in a western blot assay in at least one of the examined tissues. Distinct cellular distribution patterns of epitopes were detected by these 24 antibodies by immunofluorescence microscopy in a flower section. Subsequently, a combination of immunoprecipitation and mass spectrometry analysis identified potential targets for three of these antibodies. These results provide evidence for the generation of an antibody library using the total plant proteins as antigens. Using this method, the present study identified 61 monoclonal antibodies and 24 of them were efficiently detecting epitopes in both western blot experiments and immunofluorescence microscopy. These antibodies can be applied as informative cellular markers to study the biological mechanisms underlying floral development in plants.
Collapse
Affiliation(s)
- Qian Shi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Lian Zhou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
5
|
Ganesan V, Ascherman DP, Minden JS. Immunoproteomics technologies in the discovery of autoantigens in autoimmune diseases. Biomol Concepts 2017; 7:133-43. [PMID: 27115324 DOI: 10.1515/bmc-2016-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Proteomics technologies are often used for the identification of protein targets of the immune system. Here, we discuss the immunoproteomics technologies used for the discovery of autoantigens in autoimmune diseases where immune system dysregulation plays a central role in disease onset and progression. These autoantigens and associated autoantibodies can be used as potential biomarkers for disease diagnostics, prognostics and predicting/monitoring drug responsiveness (theranostics). Here, we compare a variety of methods such as mass spectrometry (MS)-based [serological proteome analysis (SERPA), antibody mediated identification of antigens (AMIDA), circulating immune complexome (CIC) analysis, surface enhanced laser desorption/ionization-time of flight (SELDI-TOF)], nucleic acid based serological analysis of antigens by recombinant cDNA expression cloning (SEREX), phage immunoprecipitation sequencing (PhIP-seq) and array-based immunoscreening (proteomic microarrays), luciferase immunoprecipitation systems (LIPS), nucleic acid programmable protein array (NAPPA) methods. We also review the relevance of immunoproteomic data generated in the last 10 years, with a focus on the aforementioned MS based methods.
Collapse
|
6
|
Rosen A, Casciola-Rosen L. Autoantigens as Partners in Initiation and Propagation of Autoimmune Rheumatic Diseases. Annu Rev Immunol 2016; 34:395-420. [PMID: 26907212 DOI: 10.1146/annurev-immunol-032414-112205] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic autoimmune diseases are characterized by specific targeting of a limited group of ubiquitously expressed autoantigens by the immune system. This review examines the mechanisms underlying their selection as immune targets. Initiation of autoimmune responses likely reflects the presentation of antigens with a distinct structure not previously encountered by the immune system, in a proimmune context (injury, malignancy, or infection). Causes of modified structure include somatic mutation and posttranslational modifications (including citrullination and proteolysis). Many autoantigens are components of multimolecular complexes, and some of the other components may provide adjuvant activity. Propagation of autoimmune responses appears to reflect a bidirectional interaction between the immune response and the target tissues in a mutually reinforcing cycle: Immune effector pathways generate additional autoantigen, which feeds further immune response. We propose that this resonance may be a critical principle underlying disease propagation, with specific autoantigens functioning as the hubs around which amplification occurs.
Collapse
Affiliation(s)
- Antony Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224; ,
| | - Livia Casciola-Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224; ,
| |
Collapse
|
7
|
An Optimized Fluorescence-Based Bidimensional Immunoproteomic Approach for Accurate Screening of Autoantibodies. PLoS One 2015; 10:e0132142. [PMID: 26132557 PMCID: PMC4489013 DOI: 10.1371/journal.pone.0132142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/10/2015] [Indexed: 11/23/2022] Open
Abstract
Serological proteome analysis (SERPA) combines classical proteomic technology with effective separation of cellular protein extracts on two-dimensional gel electrophoresis, western blotting, and identification of the antigenic spot of interest by mass spectrometry. A critical point is related to the antigenic target characterization by mass spectrometry, which depends on the accuracy of the matching of antigenic reactivities on the protein spots during the 2D immunoproteomic procedures. The superimposition, based essentially on visual criteria of antigenic and protein spots, remains the major limitation of SERPA. The introduction of fluorescent dyes in proteomic strategies, commonly known as 2D-DIGE (differential in-gel electrophoresis), has boosted the qualitative capabilities of 2D electrophoresis. Based on this 2D-DIGE strategy, we have improved the conventional SERPA by developing a new and entirely fluorescence-based bi-dimensional immunoproteomic (FBIP) analysis, performed with three fluorescent dyes. To optimize the alignment of the different antigenic maps, we introduced a landmark map composed of a combination of specific antibodies. This methodological development allows simultaneous revelation of the antigenic, landmark and proteomic maps on each immunoblot. A computer-assisted process using commercially available software automatically leads to the superimposition of the different maps, ensuring accurate localization of antigenic spots of interest.
Collapse
|
8
|
Ganesan V, Schmidt B, Avula R, Cooke D, Maggiacomo T, Tellin L, Ascherman DP, Bruchez MP, Minden J. Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:592-600. [PMID: 25466873 DOI: 10.1016/j.bbapap.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022]
Abstract
Immunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein. Even covalently linking antibodies to beads is susceptible to antibody leaching during IP. To circumvent this interference, we describe here a reagent, called Biotin-CDM that reversibly tags all potential target proteins in a cell lysate with biotin. The presence of biotin coupled to the target proteins allows for a secondary separation step in which antibodies are washed away from the reversibly biotinylated target proteins by binding them to an Avidin-coupled matrix. The captured target proteins are released from the Avidin matrix by reversing the Biotin-CDM link, thus releasing a pool of target proteins ready for further proteomic analysis compatible with 2D-electrophoresis. Here, we describe the synthesis and characterization of Biotin-CDM. We also demonstrate Biotin-CDM's use for immunoprecipitation of a known antigen, as well as its use for capturing an array of proteins targeted by the autoantibodies found in the serum a patient suffering from rheumatoid arthritis. The use of this reagent allows one to combine immunoprecipitation and 2D-Difference gel electrophoresis, overcoming the current limitations of Serological Proteome Analysis (SERPA) in discovering autoantigens. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Vinitha Ganesan
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Brigitte Schmidt
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Raghunandan Avula
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dagney Cooke
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Taylor Maggiacomo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawton Tellin
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dana P Ascherman
- Division of Rheumatology, Department of Medicine, University of Miami Miller School of Medicine, 1600 Northwest 10th Avenue, Miami, FL 33136, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|