1
|
Miyatsu M, Sukhbaatar A, Mishra R, Dorai A, Mori S, Kodama T. Optimization of lymphatic drug delivery system with carboplatin for metastatic lymph nodes. Sci Rep 2025; 15:16037. [PMID: 40341825 PMCID: PMC12062337 DOI: 10.1038/s41598-025-99602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Systemic chemotherapy is a common method for treatment of metastatic lymph nodes (LNs), but it has low tissue selectivity and high toxicity. Lymphatic drug delivery system (LDDS) is a novel approach to treat and prevent LN metastases. In a previous study, it was found that the increase of osmotic pressure with varied viscosity of the drug reagent enhances drug retention in the LNs. Here, we optimized the administration conditions to achieve a long-term therapeutic response by varying the dosages and injection rate, using the optimized osmotic pressure and varied viscosity of drug reagent for LDDS. A metastatic LN mouse model was created with MXH10/Mo/lpr mice. Luciferase labelled FM3A mouse mammary carcinoma cells were inoculated in subiliac LN (SiLN) to induce metastasis to the proper axillary LN (PALN). 4 days post tumor cell inoculation, carboplatin (CBDCA) was injected into the tumor-bearing SiLN under different administration conditions. Superior drug retention was observed in the group that received two-doses of CBDCA solution adjusted to an osmotic pressure and viscosity of 1897 kPa and 12 mPa·s, at an injection rate of 10 µL/min. Furthermore, this effect persisted for 42 days. This effect was accompanied by an upregulated expression of CD8, IL-12a, and IFN-γ in the spleen. These results suggest that dual-dose administration at 10 µL/min with hyper-osmotic and high viscosity formulation is optimal and can improve the long-term therapeutic efficacy of LN metastasis.
Collapse
Affiliation(s)
- Miriu Miyatsu
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Arunkumar Dorai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2‑1-1 Katahira, Aoba, Sendai, Miyagi, 980‑8577, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan.
| |
Collapse
|
2
|
Wu C, Yuan J, Tian Y, Wang Y, He X, Zhao K, Huang J, Jiang R. Tauopathy after long-term cervical lymphadenectomy. Alzheimers Dement 2025; 21:e70136. [PMID: 40189841 PMCID: PMC11973124 DOI: 10.1002/alz.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION This study examined the effects of long-term cervical lymphadenectomy (cLE) on cognitive and Alzheimer's disease (AD)-like tauopathy changes. METHODS Male C57BL/6 mice were used to assess cLE impacts on sleep, brain pathways, and pathologies. RNA sequencing and proteomics analyzed gene/protein changes, with results verified by western blotting and immunofluorescence. RESULTS CLE led to sleep and psychiatric disorders, linked to mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway activation. Activation of ERK may interfere with autophagy and is associated with phosphorylated tau accumulation. Peripheral blood analysis shows decreased brain waste in the peripheral blood post-cLE, implicating impaired lymphatic drainage and brain waste build-up. DISCUSSION These findings suggest a potential connection between cLE and AD-like tauopathy, potentially influencing surgical decisions. HIGHLIGHTS Cervical lymphadenectomy (cLE) is the cornerstone of head and neck cancers, affecting millions of people each year. We provide the first evidence of mildly impaired cognitive functioning with significant anxiety-depressive disorders in mice after long-term cLE. Long-term cLE not only directly impairs brain wastes (amyloid beta, phosphorylated tau [p-tau]) drainage, but also activates the Erk1/2 signaling pathway leading to attenuation of autophagy. We found for the first time that long-term cLE accelerated the deposition of p-tau in young mice. Patients after clinical cervical lymph node dissection showed reduced brain waste in peripheral blood consistent with mouse models. This study suggests the need for further evaluation of the neurologic effects of cervical lymph node dissection, a procedure that affects millions of people each year.
Collapse
Affiliation(s)
- Chenrui Wu
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Yu Tian
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Youlin Wang
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Xianghui He
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Ke Zhao
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Kodama T, Sukhbaatar A. Development of an intranodal drug delivery system using a mouse model with lymphadenopathy: novel discoveries and clinical application. Expert Opin Drug Deliv 2025; 22:555-564. [PMID: 39995110 DOI: 10.1080/17425247.2025.2471982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION The low drug delivery rate of systemic chemotherapy to metastatic lymph nodes (LNs) may be due to tumor growth without tumor neovascularization in the LNs, loss of existing blood vessels and lymph sinuses due to the tumor growth, and increased intranodal pressure. The lymphatic drug delivery system (LDDS) is a method of injecting anticancer drugs directly into the LNs and can overcome these problems. The world's first specific clinical study using the LDDS for head and neck cancer started in 2024 in Japan. In this review, the background of the development of LDDS up to the present clinical trials is described. AREAS COVERED The MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) recombinant inbred model mouse, vascular and lymphatic flow through LNs, the clinical N0 (cN0) LN model, preclinical studies of the LDDS, and its clinical application to treat head and neck cancer. EXPERT OPINION Conventionally, hematogenous and lymphatic administration have been the focus of attention for drug delivery to LNs. The LDDS is a method for injecting drugs directly to LNs, so it is important to develop a solvent and injecting method that can increase the uniformity of drug distribution within LNs.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Jiang Y, Sanyal M, Hussein NA, Baghdasaryan A, Zhang M, Wang F, Ren F, Li J, Zhu G, Meng Y, Adamska JZ, Mellins E, Dai H. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. SCIENCE ADVANCES 2025; 11:eadp5539. [PMID: 39919189 PMCID: PMC11804919 DOI: 10.1126/sciadv.adp5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
The COVID-19 pandemic caused a global health crisis that resulted in millions of deaths. Effective vaccines have played central roles in curtailing the pandemic. Here, we developed a down-converting near-infrared IIb (NIR-IIb; 1500 to 1700 nanometers) luminescent, pure NaErF4@NaYF4 rare-earth nanoparticle (pEr) as vaccine carriers. The pEr nanoparticles were coated with three layers of cross-linked biocompatible polymers (pEr-P3; ~55 nanometers) and conjugated to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Upon subcutaneous injection of the pEr-P3-RBD nanovaccine in mice, in vivo NIR-IIb imaging revealed active vaccine trafficking and migration to lymph nodes through lymphatic vessels. Two doses of the adjuvant-free vaccine elicited long-lasting (>7 months) high titers of serum viral neutralization antibody and anti-RBD immunoglobulin G, along with robust RBD-specific germinal center B cells and T follicular helper cells. We devised in vivo NIR-II molecular imaging of RBD-specific cells in lymph nodes, opening noninvasive assessments of vaccine-elicited immune responses longitudinally.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noor A. Hussein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yifan Meng
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Julia Zofia Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| |
Collapse
|
5
|
Takagi K, Sukhbaatar A, Inaba Y, Mori S, Kodama T. A combination of lymphatic drug delivery of anti-CTLA-4 antibody and local radiotherapy for solid-tumor treatment. Cancer Sci 2024; 115:4021-4033. [PMID: 39380185 PMCID: PMC11611777 DOI: 10.1111/cas.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The combination of radiotherapy and immunotherapy is a promising approach that has been shown in clinical trials to improve significantly survival and response rates compared with monotherapy against solid tumor. Since anti-CTLA-4 antibodies block immunosuppressive signals mainly in the lymph nodes (LNs), efficient drug delivery to the lymphatic system is desirable. However, the immune checkpoint inhibitors, especially anti-CTLA-4 are currently administered intravenously (i.v.), resulting in limited efficacy in controlling solid tumor and inhibiting metastases, and the method of administration has not been optimized. Here, we show that a combination of local radiotherapy and administration of anti-CTLA-4 antibodies using a lymphatic drug delivery system (LDDS) suppresses solid tumor and metastases. We compared the efficacy of LDDS-based immunotherapy or radioimmunotherapy with i.v. administration in a solid-tumor model created by subcutaneous inoculation into LN-swollen mice with osteosarcoma cells. Tumor-bearing mice were divided into various groups (no treatment, immunotherapy [i.v. or LDDS], radiotherapy, and radioimmunotherapy [i.v. or LDDS]) and were observed for 28 days. Immunotherapy was administered with a cumulative dose of 10 mg/kg of anti-CTLA-4 monoclonal antibody, and radiotherapy was administered with a cumulative 8 Gy of fractionated X-ray irradiation. For immunotherapy alone, LDDS provided slight tumor growth inhibition but did not inhibit distant metastasis. For radioimmunotherapy, however, tumor growth was delayed and distant metastasis was suppressed compared with radiotherapy alone. In particular, the LDDS group achieved a high tumor-suppressive effect with T cell-mediated immune activity, indicating the efficacy of LDDS in radioimmunotherapy.
Collapse
Affiliation(s)
- Koki Takagi
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of DentistryTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Yohei Inaba
- Department of Radiological TechnologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Radiation Disaster MedicineInternational Research Institute of Disaster Science, Tohoku UniversitySendaiMiyagiJapan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of DentistryTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| |
Collapse
|
6
|
Sukhbaatar A, Mori S, Sugiura T, Kodama T. Docetaxel administered through a novel lymphatic drug delivery system (LDDS) improved treatment outcomes for lymph node metastasis. Biomed Pharmacother 2024; 171:116085. [PMID: 38171241 DOI: 10.1016/j.biopha.2023.116085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, sentinel lymph nodes (LNs) have been recognized as a starting point of hematogenous metastasis; thus, an increase in the control rate of LN metastasis is expected to improve the survival rate. Although surgical treatment and radiation therapy are commonly used for the radical treatment of LNs, these treatments are associated with lymphedema, pain, and an extended hospital stay. In a recent mouse study, activation of metastatic tumors in distant organs was reported after removing LNs, with or without metastasis to the LNs. Thus, there is the necessity for cancer treatment that can replace LN removal. Here, we evaluated the treatment efficacy of lymphatic drug delivery system (LDDS) with osmotic pressure and viscosity escalated Docetaxel at the early stage of LN metastasis. MXH10/Mo/lpr mice were inoculated with mouse breast cancer cells into Subiliac LN to create the metastatic mouse model. Docetaxel was injected into mouse mammary carcinoma cells inoculated LN as a single shot (SS) or double shot (DS) to understand the therapeutic mechanism of a single shot or double shot intervention using an in vivo imaging system, histology, and qPCR. The results showed that the DS administration of docetaxel at 1,960 kPa (12 mPa∙s) had better therapeutic outcomes with increased complete response and improved survival with reduced adverse events. The results also revealed that administration of a DS of docetaxel enhances differentiation of T helper cells, and improves survival and therapeutic outcomes. From a safety perspective, LDDS-administered DS of low-concentration docetaxel without any other anticancer treatments to LNs a novel approach to cancer management of LN metastasis. We emphasize that LDDS is a groundbreaking method of delivering anticancer drugs specifically to cancer susceptible LNs and is designed to enhance the effectiveness of cancer treatment while minimizing side effects.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tsuyoshi Sugiura
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
7
|
Sukhbaatar A, Mori S, Shiga K, Kodama T. Intralymphatic injection of chemotherapy drugs modulated with glucose improves their anticancer effect. Biomed Pharmacother 2023; 165:115110. [PMID: 37421779 DOI: 10.1016/j.biopha.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Lymph node metastasis (LNM) has a significant impact on cancer prognosis, emphasizing the need for effective treatment strategies. This study investigated the potential use of high osmotic pressure drug solutions with low viscosity administration using a lymphatic drug delivery system (LDDS) to improve LNM treatment outcomes. The hypothesis was that injection of epirubicin or nimustine at high osmotic pressure but without altered viscosity would enhance drug retention and accumulation in LNs, thereby improving the efficacy of treatment. Biofluorescence analysis revealed enhanced drug accumulation and retention in LNs after administration using LDDS compared to intravenous (i.v) injection. Histopathological results demonstrated minimal tissue damage in the LDDS groups. Pharmacokinetic analysis revealed an improved treatment response with higher drug accumulation and retention in LNs. The LDDS approach offers the potential for greatly reduced side effects of chemotherapy drugs, lower dosage requirements and crucially increased drug retention in LNs. The results highlight the promise of high osmotic pressure drug solutions with low viscosity administrated using the LDDS for enhancing the treatment efficacy of LN metastasis. Further research and clinical trials are warranted to validate these results and optimize the clinical translation of this novel treatment technique.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate University Hospital, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3695, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
8
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
9
|
Sora S, Sukhbaatar A, Fukushige S, Mori S, Sakamoto M, Kodama T. Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model. Cancer Sci 2022; 114:227-235. [PMID: 36056924 PMCID: PMC9807513 DOI: 10.1111/cas.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high-frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT-PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL-12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients.
Collapse
Affiliation(s)
- Shota Sora
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Shinichi Fukushige
- Department of Metabolism and Diabetes, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Maya Sakamoto
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| |
Collapse
|
10
|
Mishra R, Sukhbaatar A, Dorai A, Mori S, Shiga K, Kodama T. Drug formulation augments the therapeutic response of carboplatin administered through a lymphatic drug delivery system. Cancer Sci 2022; 114:259-270. [PMID: 36168838 PMCID: PMC9807524 DOI: 10.1111/cas.15599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Treatment of metastatic lymph nodes (LNs) is challenging due to their unique architecture and biophysical traits. Systemic chemotherapy fails to impede tumor progression in LNs due to poor drug uptake and retention by LNs, resulting in fatal systemic metastasis. To effectively treat LN metastasis, achieving specific and prolonged retention of chemotherapy drugs in the tumor-draining LNs is essential. The lymphatic drug-delivery system (LDDS) is an ultrasound-guided drug-delivery methodology for administration of drugs to LNs that addresses these requirements. However, early-stage metastatic LNs have an additional set of drug transport barriers, such as elevated intranodal pressure and viscosity, that negatively impact drug diffusion. In the present study, using formulations of elevated osmotic pressure and viscosity relative to saline, we sought to favorably alter the LN's physical environment and study its impact on pharmacokinetics and consequently the therapeutic efficacy of carboplatin delivered using the LDDS. Our study confirmed the capability of a drug formulation with elevated osmotic pressure and viscosity to alter the architecture of LNs, as it caused notable expansion of the lymphatic sinus. Additionally, the study delineated an optimal range of osmotic pressure and viscosity, centered around 1897 kPa and 11.5 mPa·s, above and below which therapeutic efficacy was found to decline markedly. These findings suggest that formulation osmotic pressure and viscosity are parameters that require critical consideration as they can both hinder and promote tumorigenesis. The facile formulation reported here has wide-ranging applicability across cancer spectrums and is thus anticipated to be of great clinical benefit.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Arunkumar Dorai
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Kiyoto Shiga
- Department of Otolaryngology‐Head & Neck SurgeryIwate Medical UniversityYahabaJapan,Head & Neck Cancer centerIwate Medical University HospitalYahabaJapan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| |
Collapse
|
11
|
Sukhbaatar A, Mori S, Kodama T. Intranodal delivery of modified docetaxel: Innovative therapeutic method to inhibit tumor cell growth in lymph nodes. Cancer Sci 2022; 113:1125-1139. [PMID: 35100484 PMCID: PMC8990862 DOI: 10.1111/cas.15283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Delivery of chemotherapeutic agents into metastatic lymph nodes (LNs) is challenging as they are unevenly distributed in the body. They are difficult to access via traditional systemic routes of drug administration, which produce significant adverse effects and result in low accumulation of drugs into the cancerous LN. To improve the survival rate of patients with LN metastasis, a lymphatic drug delivery system (LDDS) has been developed to target metastatic LN by delivering chemotherapy agents into sentinel LN (SLN) under ultrasound guidance. The LDDS is an advanced method that can be applied in the early stage of the progression of tumor cells in the SLN before tumor mass formation has occurred. Here we investigated the optimal physicochemical ranges of chemotherapeutic agents’ solvents with the aim of increasing treatment efficacy using the LDDS. We found that an appropriate osmotic pressure range for drug administration was 700–3,000 kPa, with a viscosity < 40 mPa⋅s. In these physicochemical ranges, expansion of lymphatic vessels and sinuses, drug retention, and subsequent antitumor effects could be more precisely controlled. Furthermore, the antitumor effects depended on the tumor progression stage in the SLN, the injection rate, and the volumes of administered drugs. We anticipate these optimal ranges to be a starting point for developing more effective drug regimens to treat metastatic LN with the LDDS.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 980-8579, Japan
| |
Collapse
|
12
|
Sukhbaatar A, Kodama T. Protocols for the Evaluation of a Lymphatic Drug Delivery System Combined with Bioluminescence to Treat Metastatic Lymph Nodes. Methods Mol Biol 2022; 2524:333-346. [PMID: 35821485 DOI: 10.1007/978-1-0716-2453-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence (BL) imaging is a powerful non-invasive imaging modality widely used in a broad range of biological disciplines for many types of measurements. The applications of BL imaging in biomedicine are diverse, including tracking bacterial progression, research on gene expression patterns, monitoring tumor cell growth/regression or treatment responses, determining the location and proliferation of stem cells, and so on. It is particularly valuable when studying tissues at depths of 1 to 2 cm in mouse models during preclinical research. Here we describe the protocols for the therapeutic evaluation of a lymphatic drug delivery system (LDDS) using an in vivo BL imaging system (IVIS) for the treatment of metastatic lymph nodes (LNs) with 5-fluorouracil (5-FU). The LDDS is a method that directly injects anticancer drugs into sentinel LNs (SLNs) and delivers them to their downstream LNs. In the protocol, we show that metastases in the proper axillary LN (PALN) are induced by the injection of luciferase-expressing tumor cells into the subiliac LN (SiLN) of MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice. 5-FU is injected using the LDDS into the accessory axillary LN (AALN) to treat tumor cells in the PALN after the tumor cell growth is confirmed in the PALN. The tumor growth and therapeutic effects are evaluated by IVIS. This method can be used to evaluate tumor growth and efficacy of anticancer drugs/particles, radiotherapy, surgery, and/or a combination of these methods in various experimental procedures in the oncology field.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
13
|
Characterizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging. Clin Exp Metastasis 2021; 38:539-549. [PMID: 34654990 DOI: 10.1007/s10585-021-10127-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
A perfusion defect in a metastatic lymph node (LN) can be visualized as a localized area of low contrast on contrast-enhanced CT, MRI or ultrasound images. Hypotheses for perfusion defects include abnormal hemodynamics in neovascular vessels or a decrease in blood flow in pre-existing blood vessels in the parenchyma due to compression by LN tumor growth. However, the mechanisms underlying perfusion defects in LNs during the early stage of LN metastasis have not been investigated. We show that tumor mass formation with very few microvessels was associated with a perfusion defect in a non-enlarged LN at the early stage of LN metastasis in a LN adenopathy mouse (LN size circa 10 mm). We found in a mouse model of LN metastasis, induced using non-keratinizing tumor cells, that during the formation of the perfusion defect in a non-enlarged LN, the number of blood vessels ≤ 50 μm in diameter decreased, while those of > 50 μm in diameter increased. The methods used were contrast-enhanced high-frequency ultrasound and contrast-enhanced micro-CT imaging systems, with a maximum spatial resolution of > 30 μm. Furthermore, we found no tumor angiogenesis or oxygen partial pressure (pO2) changes in the metastatic LN. Our results demonstrate that the perfusion defect appears to be a specific form of tumorigenesis in the LN, which is a vascular-rich organ. We anticipate that a perfusion defect on ultrasound, CT or MRI images will be used as an indicator of a non-enlarged metastatic LN at an early stage.
Collapse
|
14
|
Oladipo AO, Lebepe TC, Ncapayi V, Tsolekile N, Parani S, Songca SP, Mori S, Kodama T, Oluwafemi OS. The Therapeutic Effect of Second Near-Infrared Absorbing Gold Nanorods on Metastatic Lymph Nodes via Lymphatic Delivery System. Pharmaceutics 2021; 13:pharmaceutics13091359. [PMID: 34575435 PMCID: PMC8466320 DOI: 10.3390/pharmaceutics13091359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Photothermal therapy has been established recently as a non-invasive treatment protocol for cancer metastatic lymph nodes. Although this treatment approach shows efficient tumour ablation towards lymph node metastasis, the monitoring and reporting of treatment progress using the lymphatic delivery channel still need to be explored. Herein, we investigated the anti-tumour effect of pegylated gold nanorods with a high aspect ratio (PAuNRs) delivered via the lymphatic route in a mouse model. In this study, breast carcinoma (FM3A-Luc) cells were inoculated in the subiliac lymph node (SiLN) to induce metastasis in the proper axillary lymph node (PALN). The treatment was initiated by injecting the PAuNRs into the accessory axillary lymph node (AALN) after tumour metastasis was confirmed in the PALN followed by external NIR laser irradiation under a temperature-controlled cooling system. The anti-tumour impact of the treatment was evaluated using an in vivo bioluminescence imaging system (IVIS). The results showed a time-dependent reduction in tumour activity with significant treatment response. Tumour growth was inhibited in all mice treated with PAuNRs under laser irradiation; results were statistically significant (** p < 0.01) even after treatment was concluded on day 3. We believe that this non-invasive technique would provide more information on the dynamics of tumour therapy using the lymphatically administered route in preclinical studies.
Collapse
Affiliation(s)
- Adewale O. Oladipo
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Thabang C. Lebepe
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Vuyelwa Ncapayi
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Ncediwe Tsolekile
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Sandile P. Songca
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000, South Africa;
| | - Shiro Mori
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan;
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan;
- Correspondence: (T.K.); (O.S.O.)
| | - Oluwatobi S. Oluwafemi
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, Johannesburg 2028, South Africa; (A.O.O.); (T.C.L.); (V.N.); (N.T.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
- Correspondence: (T.K.); (O.S.O.)
| |
Collapse
|
15
|
Fennen M, Weinhage T, Kracke V, Intemann J, Varga G, Wehmeyer C, Foell D, Korb-Pap A, Pap T, Dankbar B. A myostatin-CCL20-CCR6 axis regulates Th17 cell recruitment to inflamed joints in experimental arthritis. Sci Rep 2021; 11:14145. [PMID: 34239010 PMCID: PMC8266846 DOI: 10.1038/s41598-021-93599-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
The interactions of fibroblast-like synoviocyte (FLS)-derived pro-inflammatory cytokines/chemokines and immune cells support the recruitment and activation of inflammatory cells in RA. Here, we show for the first time that the classical myokine myostatin (GDF-8) is involved in the recruitment of Th17 cells to inflammatory sites thereby regulating joint inflammation in a mouse model of TNFalpha-mediated chronic arthritis. Mechanistically, myostatin-deficiency leads to decreased levels of the chemokine CCL20 which is associated with less infiltration of Th17 cells into the inflamed joints. In vitro, myostatin alone or in combination with IL-17A enhances the secretion of CCL20 by FLS whereas myostatin-deficiency reduces CCL20 secretion, associated with an altered transmigration of Th17 cells. Thus, the communication between activated FLS and Th17 cells through myostatin and IL-17A may likely contribute to a vicious cycle of inflammation, accounting for the persistence of joint inflammation in chronic arthritis. Blockade of the CCL20–CCR6 axis by inhibition of myostatin may, therefore, be a promising treatment option for chronic inflammatory diseases such as arthritis.
Collapse
Affiliation(s)
- Michelle Fennen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Kracke
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Corinna Wehmeyer
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany.
| |
Collapse
|
16
|
Fukumura R, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. Cancer Sci 2021; 112:1735-1745. [PMID: 33629407 PMCID: PMC8088917 DOI: 10.1111/cas.14867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Lymph node (LN) metastasis is thought to account for 20‐30% of deaths from head and neck cancer. The lymphatic drug delivery system (LDDS) is a new technology that enables the injection of drugs into a sentinel LN (SLN) during the early stage of tumor metastasis to treat the SLN and secondary metastatic LNs. However, the optimal physicochemical properties of the solvent used to carry the drug have not been determined. Here, we show that the osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of LN metastasis. Tumor cells were inoculated into the proper axillary LN (PALN), and the LDDS was used to inject CDDP solution into the subiliac LN (SiLN) to treat the tumor cells in the downstream PALN. CDDP dissolved in saline had no therapeutic effects in the PALN after it was injected into the SiLN using the LDDS or into the tail vein (as a control). However, CDDP solution with an osmotic pressure of ~ 1,900 kPa and a viscosity of ~ 12 mPa⋅s suppressed tumor growth in the PALN after it was injected into the SiLN using the LDDS. The high osmotic pressure dilated the lymphatic vessels and sinuses to enhance drug flow in the PALN, and the high viscosity increased the retention of CDDP in the PALN. Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS.
Collapse
Affiliation(s)
- Ryoichi Fukumura
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Maya Sakamoto
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral Information and Radiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Kato S, Yoshiba S, Mori S, Kodama T. Optimization of the delivery of molecules into lymph nodes using a lymphatic drug delivery system with ultrasound. Int J Pharm 2021; 597:120324. [PMID: 33540016 DOI: 10.1016/j.ijpharm.2021.120324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023]
Abstract
Conventional treatment for lymph node (LN) metastasis such as systemic chemotherapy have notable disadvantages that lead to the development of unwanted effects. Previously, we have reported the lymphatic administration of drugs into metastatic LNs using a lymphatic drug delivery system (LDDS). However, prior studies of the LDDS have not attempted to optimize the conditions for efficient drug delivery. Here, we investigated the influence of several factors on the efficiency of drug delivery by a LDDS in conjunction with ultrasound (US). First, the effect of the injection rate on delivery efficiency was evaluated. Fluorescent molecules injected into an upstream LN were delivered more effectively into a downstream LN when a lower injection rate was used. Second, the influence of molecular weight on drug delivery efficiency was determined. We found that molecules with a molecular weight >10,000 were poorly delivered into the LN. Finally, we assessed whether the administration route affected the delivery efficiency. We found that the delivery efficiency was higher when molecules were administered into an upstream LN that was close to the target LN. These findings revealed the importance of a drug's physical properties if it is to be administered by LDDS to treat LN metastasis.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Yoshiba
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
18
|
Kato S, Takeda K, Sukhbaatar A, Sakamoto M, Mori S, Shiga K, Kodama T. Intranodal pressure of a metastatic lymph node reflects the response to lymphatic drug delivery system. Cancer Sci 2020; 111:4232-4241. [PMID: 32882076 PMCID: PMC7648019 DOI: 10.1111/cas.14640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer metastasis to lymph nodes (LNs) almost certainly contributes to distant metastasis. Elevation of LN internal pressure (intranodal pressure, INP) during tumor proliferation is associated with a poor prognosis for patients. We have previously reported that a lymphatic drug delivery system (LDDS) allows the direct delivery of anticancer drugs into the lymphatic system and is a promising treatment strategy for early‐stage LN metastasis. However, methods for evaluating the treatment effects have not been established. Here, we used a mouse model of MXH10/Mo‐lpr/lpr, which develops a systemic swelling of LNs, and murine malignant fibrous histiocytoma‐like (KM‐Luc/GFP) cells or murine breast cancer (FM3A‐Luc) cells inoculated into the subiliac LN of mice to produce a tumor‐bearing LN model. The changes in INP during intranodal tumor progression and after treatment with cis‐dichlorodiammineplatinum(II) (CDDP) using an LDDS were measured. We found that tumor progression was associated with an increase in INP that occurred independently of LN volume changes. The elevation in INP was suppressed by CDDP treatment with the LDDS when intranodal tumor progression was significantly inhibited. These findings indicate that INP is a useful parameter for monitoring the therapeutic effect in patients with LN metastasis who have been given drugs using an LDDS, which will serve to manage cancer metastasis treatment and contribute to an improved quality of life for cancer patients.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Maya Sakamoto
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate Medical University, Yahaba-cho, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Ruiz-Ramírez J, Ziemys A, Dogra P, Ferrari M. A modeling platform for the lymphatic system. J Theor Biol 2020; 493:110193. [PMID: 32119968 PMCID: PMC7297266 DOI: 10.1016/j.jtbi.2020.110193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
We present a physiologically-based pharmacokinetic modeling platform capable of simulating the biodistribution of different therapeutic agents, including cells, their interactions within the immune system, redistribution across lymphoid compartments, and infiltration into tumor tissues. This transport-based platform comprises a distinctive implementation of a tumor compartment with spatial heterogeneity which enables the modeling of tumors of different size, necrotic state, and agent infiltration capacity. We provide three validating and three exploratory examples that illustrate the capabilities of the proposed approach. The results show that the model can recapitulate immune cell balance across different compartments, respond to antigen stimulation, simulate immune vaccine effects, and immune cell infiltration to tumors. Based on the results, the model can be used to study problems pertinent to current immunotherapies and has the potential to assist medical techniques that rely on the transport of biological species.
Collapse
Affiliation(s)
- Javier Ruiz-Ramírez
- Mathematics in Medicine Program, The Houston Methodist
Research Institute, HMRI R8-122, 6670 Bertner Ave., Houston, TX 77030 USA
| | - Arturas Ziemys
- Mathematics in Medicine Program, The Houston Methodist
Research Institute, HMRI R8-122, 6670 Bertner Ave., Houston, TX 77030 USA
| | - Prashant Dogra
- Mathematics in Medicine Program, The Houston Methodist
Research Institute, HMRI R8-122, 6670 Bertner Ave., Houston, TX 77030 USA
| | - Mauro Ferrari
- Department of Nanomedicine, The Houston Methodist Research
Institute, HMRI R8-000, 6670 Bertner Ave., Houston, TX 77030 USA
| |
Collapse
|
20
|
In vivo delivery of an exogenous molecule into murine T lymphocytes using a lymphatic drug delivery system combined with sonoporation. Biochem Biophys Res Commun 2020; 525:1025-1031. [PMID: 32178874 DOI: 10.1016/j.bbrc.2020.02.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Physical delivery of exogenous molecules into lymphocytes is extremely challenging because conventional methods have notable limitations. Here, we evaluated the potential use of acoustic liposomes (ALs) and sonoporation to deliver exogenous molecules into lymphocytes within a lymph node (LN). MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice, which show systemic LN swelling, were used as the model system. After direct injection into the subiliac LN, a solution containing both ALs and TOTO-3 fluorophores (molecular weight: 1355) was able to reach the downstream proper axillary LN (PALN) via the lymphatic vessels (LVs). This led to the accumulation of a high concentration of TOTO-3 fluorophores and ALs in the lymphatic sinuses of the PALN, where a large number of lymphocytes were densely packed. Exposure of the PALN to >1.93 W/cm2 of 970-kHz ultrasound allowed the solution to extravasate into the parenchyma and reach the large number of lymphocytes in the sinuses. Flow cytometric analysis showed that TOTO-3 molecules were delivered into 0.49 ± 0.23% of CD8+7AAD- cytotoxic T lymphocytes. Furthermore, there was no evidence of tissue damage. Thus, direct administration of drugs into LVs combined with sonoporation can improve the delivery of exogenous molecules into primary lymphocytes. This technique could become a novel approach to immunotherapy.
Collapse
|
21
|
Sukhbaatar A, Sakamoto M, Mori S, Kodama T. Analysis of tumor vascularization in a mouse model of metastatic lung cancer. Sci Rep 2019; 9:16029. [PMID: 31690726 PMCID: PMC6831815 DOI: 10.1038/s41598-019-52144-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Therapies targeting tumor vasculature would improve the treatment of lung metastasis, although the early changes in vascular structure are incompletely understood. Here, we show that obstructive metastatic foci in lung arterioles decrease the pulmonary vascular network. To generate a mouse model of lung metastasis activation, luciferase-expressing tumor cells were inoculated into the subiliac lymph node (SiLN) of an MXH10/Mo-lpr/lpr mouse, and metastatic tumor cells in the lungs were activated by SiLN resection. Activation of metastases was monitored by in vivo bioluminescence imaging. Pulmonary blood vessel characteristics were analyzed using ex vivo micro-computed tomography. The enhanced permeability and retention (EPR) effect in neovasculature after tumor cell activation was evaluated from the accumulation of intravenously injected indocyanine green (ICG) liposomes. Metastatic foci in lung arterioles were investigated histologically. Micro-computed tomography revealed decreases in pulmonary blood vessel length, volume and number of branching nodes during the early stage of metastasis caused by metastatic foci. ICG liposome accumulation by the EPR effect was not detected. Histology identified metastatic foci in lung arterioles. The lack of an EPR effect after the formation of metastatic foci in lung arterioles makes conventional systemic chemotherapy ineffective for lung metastasis. Thus, alternative therapeutic methods of drug delivery are needed.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan. .,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
22
|
Use of a Lymphatic Drug Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells Proliferating in the Marginal Sinuses. Sci Rep 2019; 9:13242. [PMID: 31519920 PMCID: PMC6744402 DOI: 10.1038/s41598-019-49386-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023] Open
Abstract
Lymph node (LN) metastasis through the lymphatic network is a major route for cancer dissemination. Tumor cells reach the marginal sinuses of LNs via afferent lymphatic vessels (LVs) and form metastatic lesions that lead to distant metastasis. Thus, targeting of metastatic cells in the marginal sinuses could improve cancer treatment outcomes. Here, we investigated whether lymphatic administration of a drug combined with sonoporation could be used to treat a LN containing proliferating murine FM3A breast cancer cells, which are highly invasive, in its marginal sinus. First, we used contrast-enhanced high-frequency ultrasound and histopathology to analyze the structure of LVs in MXH10/Mo-lpr/lpr mice, which exhibit systemic lymphadenopathy. We found that contrast agent injected into the subiliac LN flowed into the marginal sinus of the proper axillary LN (PALN) and reached the cortex. Next, we examined the anti-tumor effects of our proposed technique. We found that a strong anti-tumor effect was achieved by lymphatic administration of doxorubicin and sonoporation. Furthermore, our proposed method prevented tumor cells in the marginal sinus from invading the parenchyma of the PALN and resulted in tumor necrosis. We conclude that lymphatic administration of a drug combined with sonoporation could exert a curative effect in LNs containing metastatic cells in their marginal sinuses.
Collapse
|
23
|
Wang CX, Gao ZY, Wang X, Ke C, Zhang Z, Zhang CJ, Fu LM, Wang Y, Zhang JP. Noninvasive and real-time pharmacokinetics imaging of polymeric nanoagents in the thoracoepigastric vein networks of living mice. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31222991 PMCID: PMC6977018 DOI: 10.1117/1.jbo.24.6.066009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive and real-time visualization of the thoracoepigastric veins (TVs) of living mice was demonstrated by using two-photon excitation (TPE) optical imaging with a Eu-luminescent polymeric nanoagent as the angiographic contrast. The spatiotemporal evolution of the polymeric nanoagent in TVs was monitored for up to 2 h by TPE time-resolved (TPE-TR) bioimaging, which is free from the interference of tissue autofluorescence. A wide field-of-view covering the thoracoabdominal region allowed the visualization of the entire TV network with an imaging depth of 1 to 2 mm and a lateral resolution of 80 μm at submillimeter. Detailed analysis of the uptake, transport, and clearance processes of the polymeric nanoagent revealed a clearance time constant of ∼30 min and an apparent clearance efficiency of 80% to 90% for the nanoagent in both axial and lateral TVs. TPE-TR imaging of the dissected internal organs proved that the liver is mainly responsible for the sequestration of the nanoagent, which is consistent with the apparent retention efficiency of liver, ∼32 % , as determined by the real-time in vivo TV imaging. We demonstrate the potency of TPE-TR modality in the pharmacokinetics imaging of the peripheral vascular systems of animal models, which can be beneficial for related nanotheranostics study.
Collapse
Affiliation(s)
- Chuan-Xi Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhi-Yue Gao
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Xin Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Can Ke
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhuo Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Chao-Jie Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Li-Min Fu
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Yuan Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Jian-Ping Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| |
Collapse
|
24
|
Kikuchi R, Sukhbaatar A, Sakamoto M, Mori S, Kodama T. A model system for studying superselective radiotherapy of lymph node metastasis in mice with swollen lymph nodes. Clin Transl Radiat Oncol 2019; 20:53-57. [PMID: 31886422 PMCID: PMC6921225 DOI: 10.1016/j.ctro.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022] Open
Abstract
It is difficult to irradiate individual mouse lymph nodes (LNs) 1–2 mm in diameter. A maximum single dose is <8 Gy for whole-body irradiation of wild-type mice. We succeeded in applying radiation (8 Gy) to a single LN in mice with swollen LNs. Radiation-induced abscopal effects were observed in mice with swollen LNs.
Utilizing mice with swollen lymph nodes, we succeeded in irradiating individual metastatic lymph nodes through a hole in a lead shield. This system enabled us to increase the radiation dose to >8 Gy (the lethal dose for total-body irradiation) and evaluate both direct and abscopal antitumor effects.
Collapse
Affiliation(s)
- Ryohei Kikuchi
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
25
|
Fujii H, Horie S, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Treatment of false-negative metastatic lymph nodes by a lymphatic drug delivery system with 5-fluorouracil. Cancer Med 2019; 8:2241-2251. [PMID: 30945479 PMCID: PMC6536938 DOI: 10.1002/cam4.2125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
Metastatic lymph nodes (LNs) may be the origin of systemic metastases. It will be important to develop a strategy that prevents systemic metastasis by treating these LNs at an early stage. False‐negative metastatic LNs, which are found during the early stage of metastasis development, are those that contain tumor cells but have a size and shape similar to LNs that do not host tumor cells. Here, we show that 5‐fluorouracil (5‐FU), delivered by means of a novel lymphatic drug delivery system (LDDS), can treat LNs with false‐negative metastases in a mouse model. The effects of 5‐FU on four cell lines were investigated using in vitro cytotoxicity and cell survival assays. The therapeutic effects of LDDS‐administered 5‐FU on false‐negative metastatic LNs were evaluated using bioluminescence imaging, high‐frequency ultrasound (US), and histology in MHX10/Mo‐lpr/lpr mice. These experimental animals develop LNs that are similar in size to human LNs. We found that all cell lines showed sensitivity to 5‐FU in the in vitro assays. Furthermore, a concentration‐dependent effect of 5‐FU to inhibit tumor growth was observed in tumor cells with low invasive growth characteristics, although a significant reduction in metastatic LN volume was not detected in MHX10/Mo‐lpr/lpr mice. Adverse effects of 5‐FU were not detected. 5‐Fluorouracil administration with a LDDS is an effective treatment method for false‐negative metastatic LNs. We anticipate that the delivery of anticancer drugs by a LDDS will be of great benefit in the prevention and treatment of cancer metastasis via LNs.
Collapse
Affiliation(s)
- Honoka Fujii
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Aoba, Sendai, Miyagi, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Aoba, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Sukhbaatar A, Mori S, Saiki Y, Takahashi T, Horii A, Kodama T. Lymph node resection induces the activation of tumor cells in the lungs. Cancer Sci 2019; 110:509-518. [PMID: 30499190 PMCID: PMC6361607 DOI: 10.1111/cas.13898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023] Open
Abstract
Lymph node (LN) dissection is a crucial procedure for cancer staging, diagnosis and treatment, and for predicting patient survival. Activation of lung metastatic lesions after LN dissection has been described for head and neck cancer and breast cancer. Preclinical studies have reported that dissection of a tumor‐bearing LN is involved in the activation and rapid growth of latent tumor metastases in distant organs, but it is also important to understand how normal (non‐tumor‐bearing) LN resection influences secondary cancer formation. Here, we describe how the resection of tumor‐bearing and non‐tumor‐bearing LN affects distant metastases in MXH10/Mo‐lpr/lpr mice. Tumor cells were administered intravenously and/or intranodally into the right subiliac lymph node (SiLN) to create a mouse model of lung metastasis. Luciferase imaging revealed that tumor cells in the lung were activated after resection of the SiLN, irrespective of whether it contained tumor cells. No luciferase activity was detected in the lungs of mice that did not undergo LN resection (excluding the intravenous inoculation group). Our results indicate that resection of an LN can activate distant metastases regardless of whether the LN contains tumor cells. Hence, lung metastatic lesions are suppressed while metastatic LN are present but activated after LN resection. If this phenomenon occurs in patients with cancer, it is likely that lung metastatic lesions may be activated by elective LN dissection in clinical N0 cases. The development of minimally invasive cancer therapy without surgery would help to minimize the risk of activation of distant metastatic lesions by LN resection.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Yuriko Saiki
- Department of Molecular Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Iwamura R, Sakamoto M, Mori S, Kodama T. Imaging of the Mouse Lymphatic Sinus during Early Stage Lymph Node Metastasis Using Intranodal Lymphangiography with X-ray Micro-computed Tomography. Mol Imaging Biol 2019; 21:825-834. [DOI: 10.1007/s11307-018-01303-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Fujii H, Horie S, Takeda K, Mori S, Kodama T. Optimal range of injection rates for a lymphatic drug delivery system. JOURNAL OF BIOPHOTONICS 2018; 11:e201700401. [PMID: 29461015 DOI: 10.1002/jbio.201700401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The lymphatic drug delivery system (LDDS) is a new technique that permits the injection of drugs into a sentinel lymph node (SLN) at an early stage of tumor metastasis, thereby treating metastasis in the SLN and its secondary lymph nodes (LNs). The quantity of drug required for a LDDS is much smaller than that needed for systemic chemotherapy. However, the relationship between the rate of drug injection into a SLN and the amount of drug reaching the secondary LNs has not been investigated. In this study, we used an MXH10/Mo-lpr/lpr mouse model to show that the optimal rate for the injection of a fluorescent dye by a LDDS was 10 to 80 μL/min. An injection rate of 10 to 80 μL/min was able to fill the downstream LN. However, an injection rate of 100 μL/min drove the fluorescent dye into the efferent lymphatic vessels and thoracoepigastric vein, decreasing the amount of dye retained in the downstream LN. Bolus injection (defined as an injection rate of 2400 μL/min) was unable to deliver fluorescent dye into the downstream LN. These results agree with the impulse values calculated from the injection pressures in the upstream LN. We anticipate that our findings will facilitate the development of a LDDS for use in the clinic.
Collapse
Affiliation(s)
- Honoka Fujii
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Ouchi T, Sukhbaatar A, Horie S, Sakamoto M, Shiga K, Mori S, Kodama T. Superselective Drug Delivery Using Doxorubicin-Encapsulated Liposomes and Ultrasound in a Mouse Model of Lung Metastasis Activation. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1818-1827. [PMID: 29793853 DOI: 10.1016/j.ultrasmedbio.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Conventional treatment of lymph node metastasis involves dissection of the tumor and regional lymph nodes, but this may cause activation of latent metastatic tumor cells. However, there are few reports on animal models regarding the activation of latent metastatic tumor cells and effective methods of treating activated tumor cells. Here, we report the use of a superselective drug delivery system in a mouse model of lung metastasis in which activated tumor cells are treated with doxorubicin-encapsulated liposomes (DOX-LP) and ultrasound. The axillary lymph node was injected with DOX-LP and exposed to ultrasound so that the released DOX would be delivered from the axillary lymph node to the metastatic lung via the subclavian vein, heart and pulmonary artery. The size of the DOX-LP was optimized to a diameter of 460 nm using indocyanine green-encapsulated liposomes, and the ultrasound intensity was 0.5 W/cm2. We found that compared with DOX or DOX-LP alone, the superselective drug delivery system was effective in the treatment of metastasis in both the lung and axillary lymph node. We anticipate that this superselective drug delivery system will be a starting point for the development of new techniques for treating lung metastasis in the clinical setting. Furthermore, the superselective drug delivery system may be used to screen novel drugs for the treatment of lung cancer and investigate the mechanisms of tumor cell activation after resection of a primary tumor or lymph nodes.
Collapse
Affiliation(s)
- Tomoki Ouchi
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate Medical School, Morioka, Iwate, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
30
|
Zheng J, Jia L, Mori S, Kodama T. Evaluation of metastatic niches in distant organs after surgical removal of tumor-bearing lymph nodes. BMC Cancer 2018; 18:608. [PMID: 29848296 PMCID: PMC5977453 DOI: 10.1186/s12885-018-4538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
Background Surgical removal of primary tumors can promote the incidence of tumor metastasis. However, molecular mechanisms underlying this process remain unclear. Methods We inoculated tumor cells expressing luciferase gene into subiliac lymph node (SiLN) of the MXH10/Mo-lpr/lpr mice. The tumor-bearing SiLNs were surgically removed at a certain period of time after inoculation. Results In vivo bioluminescence imaging system and histological staining revealed metastasis in lung, proper axillary lymph node (PALN) and liver. The lung metastasis rate in SiLN removal groups was significantly higher than in the control group using Fisher exact test. Mann-Whitney U-test indicated that the luciferase-positive tumor cells in the lung and liver were significantly higher than in the control groups. The lung samples in SiLN removal groups had strong expression of lysine oxidase (LOX). Moreover, the number of CD11b+ cells in the lung and liver in the SiLN removal groups was significantly increased, which was positively correlated with LOX expression level. In addition, the condition of LOX and CD11b in liver was similar to lung. In the SiLN surgical removal groups, the matrix metalloproteinase (MMP)-2 and VEGFA expression in the lung tissues was significantly higher than in the control groups; the collagen fibers per area around the pulmonary vessels was quite significantly lower and negatively correlated with the expression of MMP-2 by Spearman’s analysis. Our data indicated that the reticular fibers were deposited and disordered in the tumor tissues of the lungs in the removal groups, and the reticular fibers per area was higher than in the control groups. The tumor cells in the PALN of control groups were significantly higher than in the SiLN removal groups, and CD169+ and CD11c+ cells were also higher than in the SiLN removal groups. Conclusions Altogether, surgical removal of the tumor-bearing lymph node promoted tumor metastasis through changing the niche in lung and liver. Treatment targeting the metastatic niche might be an effective strategy to prevent tumor metastasis, thereby possibly increasing the survival and reducing the incidence of metastasis in cancer patients.
Collapse
Affiliation(s)
- Jinhua Zheng
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Limin Jia
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan. .,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
31
|
Ye T, He R, Wu Y, Shang L, Wang S. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure. Drug Dev Ind Pharm 2017; 44:535-543. [PMID: 29141490 DOI: 10.1080/03639045.2017.1405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.
Collapse
Affiliation(s)
- Tiantian Ye
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Rui He
- b Sixth Chinese Medicine Factory, Tianjin Zhong xin Pharmaceutical Group Co., Ltd , Tianjin , PR China
| | - Yue Wu
- c Department of Pharmaceutics, School of Chinese Medicines , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Lei Shang
- d Shenyang Medical College , Shenyang , PR China
| | - Shujun Wang
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|
32
|
Matsuki D, Adewale O, Horie S, Okajima J, Komiya A, Oluwafemi O, Maruyama S, Mori S, Kodama T. Treatment of tumor in lymph nodes using near-infrared laser light-activated thermosensitive liposome-encapsulated doxorubicin and gold nanorods. JOURNAL OF BIOPHOTONICS 2017; 10:1676-1682. [PMID: 28417560 DOI: 10.1002/jbio.201600241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Tumor metastasis to lymph nodes is an important contributory factor for cancer-related deaths despite recent developments in cancer therapy. In this study, we demonstrate that tumor in the proper axillary lymph node (PALN) of the mouse can be treated by the application of external laser light to trigger the unloading of doxorubicin (DOX) encapsulated in thermosensitive liposomes (TSLs) administered together with gold nanorods (GNRs). GNRs + DOX-TSLs were injected into a mouse lymph node containing cancer cells (malignant fibrous histiocytoma-like cells) and intranodal DOX release was activated using near-infrared (NIR) laser irradiation. The temperature changes arising from the laser-irradiated GNRs triggered the release of DOX from the TSLs. A greater degree of inhibition of tumor growth was found in the co-therapy group compared to the other groups. The treatment effect was achieved by a combination of chemotherapy and NIR-activated hyperthermia. In vivo bioluminescence imaging and histological analysis confirmed tumor necrosis in response to combined treatment. This work presents a theranostic approach with excellent treatment results that has the potential to be developed into an alternative to surgery for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Daisuke Matsuki
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Oladipo Adewale
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Junnosuke Okajima
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Atsuki Komiya
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Oluwatobi Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Shigenao Maruyama
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| |
Collapse
|
33
|
Tada A, Horie S, Mori S, Kodama T. Therapeutic effect of cisplatin given with a lymphatic drug delivery system on false-negative metastatic lymph nodes. Cancer Sci 2017; 108:2115-2121. [PMID: 28846190 PMCID: PMC5666029 DOI: 10.1111/cas.13387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/06/2017] [Accepted: 08/23/2017] [Indexed: 02/02/2023] Open
Abstract
Systemic administration of drugs into the blood circulation is standard treatment for prevention of metastasis. However, systemic delivery cannot maintain sufficiently high concentrations of anticancer drugs in lymph nodes (LN). Here, we show that giving cisplatin (CDDP) using a lymphatic drug delivery system (LDDS) has the potential to treat false-negative metastatic LN. We found that in MXH10/Mo-lpr/lpr mice, which develop systemic swelling of LN up to 10 mm in diameter, accumulation of indocyanine green (ICG), which has a similar molecular weight to CDDP, in a target LN was greater for lymphatic delivery of ICG than for systemic (i.v.) administration. Furthermore, CDDP administration with a LDDS inhibited tumor growth in false-negative metastatic LN and produced fewer adverse effects than systemically given CDDP. We anticipate that drug delivery using a LDDS will, in time, replace systemic chemotherapy for the treatment of false-negative metastatic LN.
Collapse
Affiliation(s)
- Asuka Tada
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
Mikada M, Sukhbaatar A, Miura Y, Horie S, Sakamoto M, Mori S, Kodama T. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 2017; 108:846-852. [PMID: 28211204 PMCID: PMC5448659 DOI: 10.1111/cas.13206] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 02/02/2023] Open
Abstract
Most solid cancers spread to new sites via the lymphatics before hematogenous dissemination. However, only a small fraction of an intravenously administered anti‐cancer drug enters the lymphatic system to reach metastatic lymph nodes (LN). Here, we show that the enhanced permeability and retention (EPR) effect is not induced during the early stages of LN metastasis. Luciferase‐expressing tumor cells were injected into the subiliac LN of the MXH10/Mo‐lpr/lpr mouse to induce metastasis to the proper axillary LN (PALN). In vivo biofluorescence imaging was used to confirm metastasis induction and to quantify the EPR effect, measured as PALN accumulation of intravenously injected indocyanine green (ICG) liposomes. PALN blood vessel volume changes were measured by contrast‐enhanced high‐frequency ultrasound imaging. The volume and density of blood vessels in the PALN increased until day 29 after inoculation, whereas the LN volume remained constant. ICG retention was first detected on day 29 post‐inoculation. While CD31‐positive cells increased up to day 29 post‐inoculation, α‐smooth muscle actin‐positive cells were detected on day 29 post‐inoculation for the first time. These results suggest that the EPR effect was not induced in the early stages of LN metastasis; therefore, systemic chemotherapy would likely not be beneficial during the early stages of LN metastasis. The development of an alternative drug delivery system, independent of the EPR effect, is required for the treatment of LN metastasis.
Collapse
Affiliation(s)
- Mamoru Mikada
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Graduate School of Dentistry, Tohoku University, Aoba, Sendai, Japan
| | - Yoshinobu Miura
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Aoba, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Aoba, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Tohoku University, Aoba, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
35
|
Hinson AM, Massoll NA, Jolly LA, Stack BC, Bodenner DL, Franco AT. Structural alterations in tumor-draining lymph nodes before papillary thyroid carcinoma metastasis. Head Neck 2017; 39:1639-1646. [PMID: 28467685 DOI: 10.1002/hed.24807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to define and characterize the thyroid tumor-draining lymph nodes in genetically engineered mice harboring thyroid-specific expression of oncogenic BrafV600E with and without Pten insufficiency. METHODS After intratumoral injection of methylene blue, the lymphatic drainage of the thyroid gland was visualized in real time. The thyroid gland/tumor was resected en bloc with the respiratory system for histological analysis. RESULTS Although mice harboring BrafV600E mutations were smaller in body size compared with their wild-type (WT) littermates, the size of their thyroid glands and deep cervical lymph nodes were significantly larger. Additionally, the tumor-draining lymph nodes showed increased and enlarged lymphatic sinuses that were distributed throughout the cortex and medulla. Tumor-reactive lymphadenopathy and histiocytosis, but no frank metastases, were observed in all mice harboring BrafV600E mutations. CONCLUSIONS The tumor-draining lymph nodes undergo significant structural alterations in immunocompetent mice, and this may represent a primer for papillary thyroid carcinoma (PTC) metastasis.
Collapse
Affiliation(s)
- Andrew M Hinson
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nicole A Massoll
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Brendan C Stack
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Donald L Bodenner
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aime T Franco
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
36
|
A novel treatment for metastatic lymph nodes using lymphatic delivery and photothermal therapy. Sci Rep 2017; 7:45459. [PMID: 28368042 PMCID: PMC5377366 DOI: 10.1038/srep45459] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
Systemic delivery of an anti-cancer agent often leads to only a small fraction of the administered dose accumulating in target sites. Delivering anti-cancer agents through the lymphatic network can achieve more efficient drug delivery for the treatment of lymph node metastasis. We show for the first time that polymeric gold nanorods (PAuNRs) can be delivered efficiently from an accessory axillary lymph node to a tumor-containing proper axillary lymph node, enabling effective treatment of lymph node metastasis. In a mouse model of metastasis, lymphatic spread of tumor was inhibited by lymphatic-delivered PAuNRs and near-infrared laser irradiation, with the skin temperature controlled by cooling. Unlike intravenous injection, lymphatic injection delivered PAuNRs at a high concentration within a short period. The results show that lymphatic administration has the potential to deliver anti-cancer agents to metastatic lymph nodes for inhibition of tumor growth and could be developed into a new therapeutic method.
Collapse
|
37
|
Sato T, Takemura T, Ouchi T, Mori S, Sakamoto M, Arai Y, Kodama T. Monitoring of Blood Vessel Density Using Contrast-Enhanced High Frequency Ultrasound May Facilitate Early Diagnosis of Lymph Node Metastasis. J Cancer 2017; 8:704-715. [PMID: 28382132 PMCID: PMC5381158 DOI: 10.7150/jca.18027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/12/2017] [Indexed: 12/25/2022] Open
Abstract
Time-dependent alterations in the ultrasonography characteristics of lymph nodes during early-stage metastasis have not been compared with those of tumor-draining lymph nodes that do not develop tumor; this is partly due to the absence of an appropriate experimental model. In a previous study of lymph nodes with experimental early-stage metastasis, we used contrast-enhanced high-frequency ultrasound to demonstrate that an increase in lymph node blood vessel density preceded any changes in lymph node volume. In the present study, we used an experimental model of lymph node metastasis in which tumor cells metastasized from the subiliac lymph node to the proper axillary lymph node (the tumor-draining lymph node). We utilized contrast-enhanced high-frequency ultrasound to perform a longitudinal analysis of tumor-draining lymph nodes, comparing those at an early-stage of metastasis with those that did not develop detectable metastasis. We found that the normalized blood vessel density of an early-stage metastatic lymph node exhibited a progressive rise, whereas that of a tumor-draining lymph node not containing tumor began to increase later. For both types of lymph nodes, the normalized blood vessel density on the final day of experiments showed a trend towards being higher than that measured in controls. We further found that mice with an initially low value for lymph node blood vessel density subsequently showed a larger increase in the blood vessel density of the metastatic lymph node; this differed significantly from measurements in controls. The present study indicates that a longitudinal analysis of the blood vessel densities of tumor-draining lymph nodes, made using contrast-enhanced high-frequency ultrasound imaging, may be a potentially promising method for detecting early-stage lymph node metastasis in selected patients. Furthermore, our findings suggest that tumor in an upstream lymph node may induce alteration of the vascular structures in draining lymph nodes that do not contain tumor.
Collapse
Affiliation(s)
- Takuma Sato
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan;; Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tomoaki Takemura
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tomoki Ouchi
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan;; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
38
|
Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice. J Immunol Methods 2017; 445:1-9. [PMID: 28237707 DOI: 10.1016/j.jim.2017.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
Abstract
Cancer cells metastasize to lymph nodes, with distant metastasis resulting in poor prognosis. The role of lymph node metastasis (LNM) in the spread of cancer to distant organs remain incompletely characterized. The visualization of flow dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of lymph nodes up to 10mm in diameter, has revealed that lymph nodes have the potential to be a direct source of systemic metastasis. However, it is not known whether these fluid dynamics characteristics are universal phenomena present in other strains of laboratory mice. Here we show that the fluid dynamics observed in MXH10/Mo-lpr/lpr mice are the same as those observed in C57BL/6J, BALB/cAJcl and NOD/ShiJic-scidJcl mice. Furthermore, when fluorescent solution was injected into a tumor-bearing lymph node, the flow dynamics observed in the efferent lymphatic vessels and thoracoepigastric vein depended on the type of tumor cell. Our results indicate that fluid dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice are generalized phenomena seen in conventional laboratory mice. We anticipate our results can facilitate studies of the progression of lymphatic metastasis to hematogenous metastasis via lymph nodes and the early diagnosis and treatment of LNM.
Collapse
|
39
|
Kodama T, Matsuki D, Tada A, Takeda K, Mori S. New concept for the prevention and treatment of metastatic lymph nodes using chemotherapy administered via the lymphatic network. Sci Rep 2016; 6:32506. [PMID: 27581921 PMCID: PMC5007471 DOI: 10.1038/srep32506] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
Intravenous chemotherapy has poor access to metastatic lymph nodes (LNs) and is limited by short-lived drug concentrations. Here, we describe the administration of chemotherapy via the lymphatic network as a new concept for the prevention and treatment of metastatic LNs. A metastatic LN can be treated by the injection of drugs into an upstream LN, either the sentinel LN (SLN) or another upstream LN. In a mouse model, tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis to the proper axillary LN (PALN). Two routes were used for drug delivery to the PALN, namely from the SiLN and from the accessory axillary LN (AALN). We found that tumor masses were formed in lymphatic vessels between the SiLN and PALN. The flow of fluorescent solution injected into the SiLN towards the PALN decreased with tumor mass formation. Delivery from the AALN (free of metastatic tumor cells) to the PALN was identified as an alternative route. Intranodal injection can deliver high concentrations of drugs to secondary metastatic LNs. The study advocates a new concept for the prevention and treatment of metastatic lymph nodes whereby drugs injected into upstream lymph nodes can reach metastatic lymph nodes via the lymphatic network.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Daisuke Matsuki
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Asuka Tada
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki-aza-Aoba, Aoba, Sendai 980-8579, Japan
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575, Japan
| |
Collapse
|
40
|
Miura Y, Mikada M, Ouchi T, Horie S, Takeda K, Yamaki T, Sakamoto M, Mori S, Kodama T. Early diagnosis of lymph node metastasis: Importance of intranodal pressures. Cancer Sci 2016; 107:224-32. [PMID: 26716604 PMCID: PMC4814246 DOI: 10.1111/cas.12873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/23/2023] Open
Abstract
Regional lymph node status is an important prognostic indicator of tumor aggressiveness. However, early diagnosis of metastasis using intranodal pressure, at a stage when lymph node size has not changed significantly, has not been investigated. Here, we use an MXH10/Mo-lpr/lpr mouse model of lymph node metastasis to show that intranodal pressure increases in both the subiliac lymph node and proper axillary lymph node, which are connected by lymphatic vessels, when tumor cells are injected into the subiliac lymph node to induce metastasis to the proper axillary lymph node. We found that intranodal pressure in the subiliac lymph node increased at the stage when metastasis was detected by in vivo bioluminescence, but when proper axillary lymph node volume (measured by high-frequency ultrasound imaging) had not increased significantly. Intravenously injected liposomes, encapsulating indocyanine green, were detected in solid tumors by in vivo bioluminescence, but not in the proper axillary lymph node. Basic blood vessel and lymphatic channel structures were maintained in the proper axillary lymph node, although sinus histiocytosis was detected. These results show that intranodal pressure in the proper axillary lymph node increases at early stages when metastatic tumor cells have not fully proliferated. Intranodal pressure may be a useful parameter for facilitating early diagnosis of lymph node metastasis.
Collapse
Affiliation(s)
- Yoshinobu Miura
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Mamoru Mikada
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tomoki Ouchi
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Sachiko Horie
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kazu Takeda
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teppei Yamaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Japan
| | - Shiro Mori
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
41
|
Ito K, Noro K, Yanagisawa Y, Sakamoto M, Mori S, Shiga K, Kodama T, Aoki T. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3120-3130. [PMID: 26411669 DOI: 10.1016/j.ultrasmedbio.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 06/05/2023]
Abstract
An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.
Collapse
Affiliation(s)
- Koichi Ito
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | - Kazumasa Noro
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yukari Yanagisawa
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shiro Mori
- Department of Oral Medicine and Surgery, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kiyoto Shiga
- School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takafumi Aoki
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
42
|
Kato S, Mori S, Kodama T. A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. J Cancer 2015; 6:1282-94. [PMID: 26640589 PMCID: PMC4643085 DOI: 10.7150/jca.13028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/31/2015] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy based on hematogenous administration of drugs to lymph nodes (LNs) located outside the surgically resected area shows limited tissue selectivity and inadequate response rates, resulting in poor prognosis. Here, we demonstrate proof of concept for a lymphatic drug delivery system using nano/microbubbles (NMBs) and ultrasound (US) to achieve sonoporation in LNs located outside the dissection area. First, we demonstrated the in vitro effectiveness of doxorubicin (Dox) delivered into three different tumor cell lines by sonoporation. Sonoporation increased the Dox autofluorescence signal and resulted in a subsequent decrease in cell viability. Next, we verified the antitumor effects of Dox in vivo using MXH10/Mo-lpr/lpr mice that exhibit systemic lymphadenopathy, with some peripheral LNs reaching 10 mm in diameter. We defined the subiliac LN (SiLN) as the upstream LN within the dissection area, and the proper axillary LN (PALN) as the downstream LN outside the dissection area. Dox and NMBs were injected into the SiLN and delivered to the PALN via lymphatic vessels; the PALN was then exposed to US when it had filled with solution. We found that sonoporation enhanced the intracellular uptake of Dox leading to high cytotoxicity. We also found that sonoporation induced extravasation of Dox from lymphatic endothelia and penetration of Dox into tumor tissues within the PALN. Furthermore, our method inhibited tumor growth and diminished blood vessels in the PALN while avoiding systemic toxic effects of Dox. Our findings indicate that a lymphatic drug delivery system with sonoporation represents a promising method for treating metastatic LNs located outside the dissection area.
Collapse
Affiliation(s)
- Shigeki Kato
- 1. Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- 2. Department of Oral Medicine and Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- 1. Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
43
|
Shao L, Takeda K, Kato S, Mori S, Kodama T. Communication between lymphatic and venous systems in mice. J Immunol Methods 2015; 424:100-5. [PMID: 26009246 DOI: 10.1016/j.jim.2015.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 01/27/2023]
Abstract
The lymphatic system in mice consists of lymphatic vessels and 22 types of lymph nodes. Metastatic tumor cells in the lymphatic system spread to distant organs through the venous system. However, the communication routes between the lymphatic and venous systems have not been fully elucidated. Here, we identify the communication routes between the lymphatic and venous systems in the axillary and subiliac regions of MXH10/Mo-lpr/lpr inbred mice, which develop systemic swelling of lymph nodes up to 10mm in diameter, allowing investigation of the topography of the lymph nodes and lymphatic vessels. Using a gross anatomy dissection approach, the efferent lymphatic vessels of the proper axillary lymph node were shown to communicate with the subclavian vein. Furthermore, we found that the thoracoepigastric vein, which connects the subclavian vein and inferior vena cava, runs adjacent to the subiliac and proper axillary lymph nodes, and receives venous blood from these lymph nodes routed through small branches. The direction of blood flow in the thoracoepigastric vein occurred in two directions in the intermediate region between the proper axillary lymph node and subiliac lymph node; one to the subclavian vein, the other to the inferior vena cava. This paper reveals the anatomy of the communication between the lymphatic and venous systems in the axillary and subiliac regions of the mouse, and provides new insights relevant to the investigation of the mechanisms of lymph node metastasis and cancer immunology, and the development of diagnostic and treatment methods for lymph node metastasis, including drug delivery systems.
Collapse
Affiliation(s)
- Lenan Shao
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
44
|
Kato S, Shirai Y, Kanzaki H, Sakamoto M, Mori S, Kodama T. Delivery of molecules to the lymph node via lymphatic vessels using ultrasound and nano/microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1411-21. [PMID: 25637527 DOI: 10.1016/j.ultrasmedbio.2014.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 05/24/2023]
Abstract
Lymph node (LN) dissection is the primary option for head and neck cancer when imaging modalities and biopsy confirm metastasis to the sentinel LN. However, there are no effective alternative treatments to dissection for LN metastasis. Here, we describe a novel drug delivery system combining nano/microbubbles (NMBs) with ultrasound (US) that exhibits considerable potential for the delivery of exogenous molecules into LNs through the lymphatic vessels. A solution containing fluorophores (as a model of a therapeutic molecule) and NMBs was injected into the subiliac LNs of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of LNs (up to 13 mm in diameter, similar to human LNs). It was found that the NMBs were delivered to the entire area of the proper axillary LN (proper-ALN) via the lymphatic channels and that these were retained there for more than 8 min. Furthermore, exposure to US in the presence of NMBs enhanced the delivery of fluorophores into the lymphocytes near the lymphatic channels, compared with exposure to US in the absence of NMBs. It is proposed that a system using US and NMBs to deliver therapeutic drugs via lymphatic vessels can serve as a new treatment method for LN metastasis.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yuko Shirai
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyuki Kanzaki
- Department of Maxillo-Oral Disorders, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shiro Mori
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
45
|
Sato T, Mori S, Sakamoto M, Arai Y, Kodama T. Direct delivery of a cytotoxic anticancer agent into the metastatic lymph node using nano/microbubbles and ultrasound. PLoS One 2015; 10:e0123619. [PMID: 25897663 PMCID: PMC4405545 DOI: 10.1371/journal.pone.0123619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Direct injection of an anticancer agent into a metastatic lymph node (LN) has not been used as a standard treatment because evidence concerning the efficacy of local administration of a drug into a metastatic LN has not been established. Here we show that the combination of intralymphatic drug delivery with nano/microbubbles (NMBs) and ultrasound has the potential to improve the chemotherapeutic effect. We delivered cis-diamminedichloroplatinum (II) (CDDP) into breast carcinoma cells in vitro and found that apoptotic processes were involved in the antitumor action. Next, we investigated the antitumor effect of intralymphatic chemotherapy with NMBs and ultrasound in an experimental model of LN metastasis using MXH10/Mo-lpr/lpr mice exhibiting lymphadenopathy. The combination of intralymphatic chemotherapy with NMBs and ultrasound has the potential to improve the delivery of CDDP into target LNs without damage to the surrounding normal tissues. The present study indicates that intralymphatic drug delivery with NMBs and ultrasound will potentially be of great benefit in the clinical setting.
Collapse
Affiliation(s)
- Takuma Sato
- Graduate School of Biomedical Engineering, Tohoku University, 4–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
- Department of Urology, Tohoku University Graduate School of Medicine, 1–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
| | - Shiro Mori
- Graduate School of Biomedical Engineering, Tohoku University, 4–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, 1–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, 4–1 Seiryo-machi, Aoba, Sendai, Miyagi, 980–8575, Japan
- * E-mail:
| |
Collapse
|
46
|
Shao L, Ouchi T, Sakamoto M, Mori S, Kodama T. Activation of latent metastases in the lung after resection of a metastatic lymph node in a lymph node metastasis mouse model. Biochem Biophys Res Commun 2015; 460:543-8. [PMID: 25824032 DOI: 10.1016/j.bbrc.2015.03.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023]
Abstract
Iatrogenic induction of regional and distant cancer metastases is a risk associated with clinical resection of tumor-positive sentinel lymph nodes. However, there have been no studies of this risk in a mouse model of cancer metastasis. Here, we report that resection of a tumor-bearing subiliac lymph node (SiLN) enhanced lung metastasis in a mouse model of lymph node metastasis. Bioluminescence imaging revealed that metastatic tumor cells in the secondary lymph node continued to grow after resection of the SiLN, and that the probability of metastasis to the lungs was increased when the interval between SiLN inoculation and resection was reduced. Futhermore, histological analysis demonstrated that latents in the lung were stimulated to grow after resection of the SiLN. Fluorescence imaging indicated that the route of tumor cell dissemination from SiLN to the lung was the venous system located over the SiLN. We speculate that our mouse model will be useful for studying the mechanisms of tumor cell latency, with a view to improving the detection and treatment of latent metastases.
Collapse
Affiliation(s)
- Lenan Shao
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Tomoki Ouchi
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
47
|
Kodama T, Hatakeyama Y, Kato S, Mori S. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system. BIOMEDICAL OPTICS EXPRESS 2015; 6:124-34. [PMID: 25657881 PMCID: PMC4317120 DOI: 10.1364/boe.6.000124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 05/28/2023]
Abstract
Curing/preventing micrometastasis to lymph nodes (LNs) located outside the surgically resected area is essential for improving the morbidity and mortality associated with breast cancer and head and neck cancer. However, no lymphatic therapy system exists that can deliver drugs to LNs located outside the dissection area. Here, we demonstrate proof of concept for a drug delivery system using MXH10/Mo-lpr/lpr mice that exhibit systemic lymphadenopathy, with some peripheral LNs being as large as 10 mm in diameter. We report that a fluorescent solution injected into the subiliac LN (defined as the upstream LN within the dissection area) was delivered successfully to the proper axillary LN (defined as the downstream LN outside the dissection area) through the lymphatic vessels. Our results suggest that this approach could be used before surgical resection to deliver drugs to downstream LNs outside the dissection area. We anticipate that our methodology could be applied clinically, before surgical resection, to cure/prevent micrometastasis in LNs outside the dissection area, using techniques such as ultrasound-guided internal jugular vein catheterization.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575,
Japan
| | - Yuriko Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575,
Japan
| | - Shigeki Kato
- Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575,
Japan
| | - Shiro Mori
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai 980-8575,
Japan
| |
Collapse
|
48
|
Yamauchi A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Igarashi K, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Arai T, Shindo T. Functional differentiation of RAMP2 and RAMP3 in their regulation of the vascular system. J Mol Cell Cardiol 2014; 77:73-85. [DOI: 10.1016/j.yjmcc.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
|
49
|
Sato T, Mori S, Arai Y, Kodama T. The combination of intralymphatic chemotherapy with ultrasound and nano-/microbubbles is efficient in the treatment of experimental tumors in mouse lymph nodes. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1237-49. [PMID: 24656719 DOI: 10.1016/j.ultrasmedbio.2013.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 12/07/2013] [Indexed: 05/11/2023]
Abstract
Intravenous chemotherapy is a therapeutic option for the treatment of lymph node metastasis, but the drugs often have difficulty accessing the lymphatic system. The aim of this study was to determine whether the combination of intralymphatic chemotherapy with ultrasound and nano-/microbubbles is active against tumors in mouse lymph nodes. Intralymphatic chemotherapy in mice with lymph nodes containing tumors was found to have a marked anti-tumor effect, compared with intravenous administration, and the addition of ultrasound combined with nano-/microbubbles enhanced the effect of the anti-cancer drug, but only when the drug was administered intralymphatically. Furthermore, decreases in the volumes and blood vessel densities of tumor-bearing lymph nodes are reliable measures of therapeutic effect, confirmed by histopathological evaluation. The main conclusion is that combining ultrasound with nano-/microbubbles and intralymphatic chemotherapy improves drug delivery to the lymphatic system and has a more potent anti-tumor effect.
Collapse
Affiliation(s)
- Takuma Sato
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan; Department of Urology, Tohoku University Graduate School of Medicine, Aoba, Sendai, Miyagi, Japan
| | - Shiro Mori
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Aoba, Sendai, Miyagi, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, Aoba, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.
| |
Collapse
|
50
|
Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A 2014; 111:6696-701. [PMID: 24753589 DOI: 10.1073/pnas.1405634111] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Given mounting evidence of the importance of gut-microbiota/immune-cell interactions in immune homeostasis and responsiveness, surprisingly little is known about leukocyte movements to, and especially from, the gut. We address this topic in a minimally perturbant manner using Kaede transgenic mice, which universally express a photoconvertible fluorescent reporter. Transcutaneous exposure of the cervical lymph nodes to violet light permitted punctual tagging of immune cells specifically therein, and subsequent monitoring of their immigration to the intestine; endoscopic flashing of the descending colon allowed specific labeling of intestinal leukocytes and tracking of their emigration. Our data reveal an unexpectedly broad movement of leukocyte subsets to and from the gut at steady state, encompassing all lymphoid and myeloid populations examined. Nonetheless, different subsets showed different trafficking proclivities (e.g., regulatory T cells were more restrained than conventional T cells in their exodus from the cervical lymph nodes). The novel endoscopic approach enabled us to evidence gut-derived Th17 cells in the spleens of K/BxN mice at the onset of their genetically determined arthritis, thereby furnishing a critical mechanistic link between the intestinal microbiota, namely segmented filamentous bacteria, and an extraintestinal autoinflammatory disease.
Collapse
|