1
|
Pfeiffer A, Bandara G, Petersen JD, Falduto GH, Zimmerberg J, Metcalfe DD, Olivera A. Activation of the receptor KIT induces the secretion of exosome-like small extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e139. [PMID: 38938682 PMCID: PMC11080788 DOI: 10.1002/jex2.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 06/29/2024]
Abstract
The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.
Collapse
Affiliation(s)
- Annika Pfeiffer
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Geethani Bandara
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer D. Petersen
- Section on Integrative BiophysicsDivision of Basic and Translational BiophysicsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Inherited Movement Disorders UnitNeurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Guido H. Falduto
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua Zimmerberg
- Section on Integrative BiophysicsDivision of Basic and Translational BiophysicsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Dean D. Metcalfe
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ana Olivera
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
2
|
Tobío A, Bandara G, Morris DA, Kim DK, O'Connell MP, Komarow HD, Carter MC, Smrz D, Metcalfe DD, Olivera A. Oncogenic D816V-KIT signaling in mast cells causes persistent IL-6 production. Haematologica 2019; 105:124-135. [PMID: 30948489 PMCID: PMC6939509 DOI: 10.3324/haematol.2018.212126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Persistent dysregulation of IL-6 production and signaling have been implicated in the pathology of various cancers. In systemic mastocytosis, increased serum levels of IL-6 associate with disease severity and progression, although the mechanisms involved are not well understood. Since systemic mastocytosis often associates with the presence in hematopoietic cells of a somatic gain-of-function variant in KIT, D816V-KIT, we examined its potential role in IL-6 upregulation. Bone marrow mononuclear cultures from patients with greater D816V allelic burden released increased amounts of IL-6 which correlated with the percentage of mast cells in the cultures. Intracellular IL-6 staining by flow cytometry and immunofluorescence was primarily associated with mast cells and suggested a higher percentage of IL-6 positive mast cells in patients with higher D816V allelic burden. Furthermore, mast cell lines expressing D816V-KIT, but not those expressing normal KIT or other KIT variants, produced constitutively high IL-6 amounts at the message and protein levels. We further demonstrate that aberrant KIT activity and signaling are critical for the induction of IL-6 and involve STAT5 and PI3K pathways but not STAT3 or STAT4. Activation of STAT5A and STAT5B downstream of D816V-KIT was mediated by JAK2 but also by MEK/ERK1/2, which not only promoted STAT5 phosphorylation but also its long-term transcription. Our study thus supports a role for mast cells and D816V-KIT activity in IL-6 dysregulation in mastocytosis and provides insights into the intracellular mechanisms. The findings contribute to a better understanding of the physiopathology of mastocytosis and suggest the importance of therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Araceli Tobío
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Denise A Morris
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael P O'Connell
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Smrz
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Yin DD, Luo JH, Zhao ZY, Liao YJ, Li Y. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease. Mol Med Rep 2018; 17:7356-7364. [PMID: 29568954 DOI: 10.3892/mmr.2018.8776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.
Collapse
Affiliation(s)
- Dan-Dan Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan 410011, P.R. China
| | - Jun-Hui Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan 410011, P.R. China
| | - Zhu-Ye Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan 410011, P.R. China
| | - Ying-Jun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan 410011, P.R. China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
4
|
Kim DK, Beaven MA, Kulinski JM, Desai A, Bandara G, Bai Y, Prussin C, Schwartz LB, Komarow H, Metcalfe DD, Olivera A. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis. PLoS One 2016; 11:e0162831. [PMID: 27611333 PMCID: PMC5017616 DOI: 10.1371/journal.pone.0162831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph M. Kulinski
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avanti Desai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Calman Prussin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hirsh Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gough KC, Maddison BC, Shikotra A, Moiseeva EP, Yang W, Jarvis S, Bradding P. Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells. Respir Res 2015; 16:86. [PMID: 26173671 PMCID: PMC4501212 DOI: 10.1186/s12931-015-0245-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells. METHODS We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins. RESULTS Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling. CONCLUSION Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK.
| | - Elena P Moiseeva
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK.
| | - Weidong Yang
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK.
| | - Shila Jarvis
- ADAS UK, Biology Department, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK. .,Department of Respiratory Medicine, Glenfield Hospital, Groby Rd, Leicester, LE3 9QP, UK.
| |
Collapse
|
6
|
Siebenhaar F, Falcone FH, Tiligada E, Hammel I, Maurer M, Sagi-Eisenberg R, Levi-Schaffer F. The search for mast cell and basophil models--are we getting closer to pathophysiological relevance? Allergy 2015; 70:1-5. [PMID: 25155287 DOI: 10.1111/all.12517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- F. Siebenhaar
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - F. H. Falcone
- Division of Molecular and Cellular Science; School of Pharmacy; University of Nottingham; Nottingham UK
| | - E. Tiligada
- Department of Pharmacology; Medical School University of Athens; Athens Greece
| | - I. Hammel
- Department of Pathology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - M. Maurer
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Sagi-Eisenberg
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - F. Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics; School of Pharmacy; Institute for Drug Research; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
7
|
Ranieri G, Marech I, Pantaleo M, Piccinno M, Roncetti M, Mutinati M, Rizzo A, Gadaleta CD, Introna M, Patruno R, Sciorsci RL. In vivo model for mastocytosis: A comparative review. Crit Rev Oncol Hematol 2014; 93:159-69. [PMID: 25465741 DOI: 10.1016/j.critrevonc.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022] Open
Abstract
Human mastocytosis are heterogeneous group of neoplastic diseases characterized by a different degree of uncontrolled mast cell (MC) proliferation and activation. Interestingly, human mastocytosis share several biological and clinical features with canine mast cell disorders, so called canine mast cell tumors (CMCTs). These CMCTs are the most common spontaneous cutaneous tumors found in dogs representing a valid model to study neoplastic mast cell disorders. It has been discovered that the pathological activation of c-Kit receptor (c-KitR), expressed by MCs, has been involved in the pathogenesis of neoplastic MC disorders. In this review we have focused on human mastocytosis in terms of: (i) epidemiology and classification; (ii) pathogenesis at molecular levels; (iii) clinical presentation. In addition, we have summarized animal models useful to study neoplastic MC disorders including CMCTs and murine transgenic models. Finally, we have revised therapeutic approaches mostly common in human and canine MCTs and novel tyrosine kinase inhibitors approved for CMCTs and recently translated in human clinical trials.
Collapse
Affiliation(s)
- Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Marianna Pantaleo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Mariagrazia Piccinno
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Maria Roncetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Maddalena Mutinati
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Annalisa Rizzo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Marcello Introna
- Department of Pathology, Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| | - Rosa Patruno
- Department of Prevention and Animal Health, ASL BAT, Barletta, Italy
| | - Raffaele Luigi Sciorsci
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
SCF/C-KIT signaling modulates tryptase expression in acute myeloid leukemia cells. Int J Hematol 2014; 99:750-7. [PMID: 24806698 DOI: 10.1007/s12185-014-1586-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 01/31/2023]
Abstract
Tryptase is a serine protease with a variety of biological functions. Recently, elevated serum tryptase has been detected in certain patients with acute myeloid leukemia (AML). However, the underlying mechanism for the regulation of tryptase expression remains elusive. In this study, we aimed to investigate the role of stem cell factor (SCF)/C-KIT signaling in regulating the expression of tryptase in AML cells. We found a significant positive correlation between tryptase and C-KIT expression levels in AML patients. Furthermore, real-time PCR, Western blot and ELISA analysis showed that SCF upregulated tryptase mRNA and protein expression in U937 cells, and that this effect was abolished by pretreatment with PD98059 and SB230580. In addition, levels of phosphorylated ERK1/2 and p38MAPK correlated with tryptase levels. Taken together, these data suggest that the expression of tryptase is regulated by SCF/C-KIT signaling via the ERK1/2 and p38MAPK pathways.
Collapse
|