1
|
Michelchen S, Micheel B, Hanack K. In vitro immunization approach to generate specific murine monoclonal IgG antibodies. J Immunol Methods 2021; 499:113149. [PMID: 34560072 DOI: 10.1016/j.jim.2021.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Generating a monoclonal antibody to date is a time intense process that requires immunization of laboratory animals. The transfer of the humoral immune response into in vitro settings enables a shortening of this process and circumvents the necessity of in vivo immunization. However, to orchestrate the complex interplay of dendritic cells, T and B lymphocytes in vitro is very challenging. We therefore aimed for a simplified approach focusing on the protagonist of antibody production: the B lymphocyte. We activated purified murine B lymphocytes alone in vitro by using combinations of antigen and stimuli. We were able to induce a specific antibody response within ten days of culture against a viral coat protein as model antigen. Antibodies were of both IgM and IgG subclass. The stimulated B lymphocytes were transformed into permanently antibody-producing hybridomas by cell fusion technology. We furthermore used this method to induce a specific antibody response against L. pneumophilain vitro. We thus established a useful and effective in vitro protocol to generate monoclonal antibodies. By overcoming the necessity of in vivo immunization this protocol may be the first step towards a universal strategy to generate antibodies from various species.
Collapse
Affiliation(s)
- Sophia Michelchen
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| | - Burkhard Micheel
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
2
|
Demolombe V, de Brevern AG, Felicori L, NGuyen C, Machado de Avila RA, Valera L, Jardin-Watelet B, Lavigne G, Lebreton A, Molina F, Moreau V. PEPOP 2.0: new approaches to mimic non-continuous epitopes. BMC Bioinformatics 2019; 20:387. [PMID: 31296178 PMCID: PMC6625012 DOI: 10.1186/s12859-019-2867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bioinformatics methods are helpful to identify new molecules for diagnostic or therapeutic applications. For example, the use of peptides capable of mimicking binding sites has several benefits in replacing a protein which is difficult to produce, or toxic. Using peptides is less expensive. Peptides are easier to manipulate, and can be used as drugs. Continuous epitopes predicted by bioinformatics tools are commonly used and these sequential epitopes are used as is in further experiments. Numerous discontinuous epitope predictors have been developed but only two bioinformatics tools have been proposed so far to predict peptide sequences: Superficial and PEPOP 2.0. PEPOP 2.0 can generate series of peptide sequences that can replace continuous or discontinuous epitopes in their interaction with their cognate antibody. RESULTS We have developed an improved version of PEPOP (PEPOP 2.0) dedicated to answer to experimentalists' need for a tool able to handle proteins and to turn them into peptides. The PEPOP 2.0 web site has been reorganized by peptide prediction category and is therefore better formulated to experimental designs. Since the first version of PEPOP, 32 new methods of peptide design were developed. In total, PEPOP 2.0 proposes 35 methods in which 34 deal specifically with discontinuous epitopes, the most represented epitope type in nature. CONCLUSION Through the presentation of its user-friendly, well-structured new web site conceived in close proximity to experimentalists, we report original methods that show how PEPOP 2.0 can assist biologists in dealing with discontinuous epitopes.
Collapse
Affiliation(s)
- Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Alexandre G de Brevern
- INSERM UMR-S 1134, DSIMB, F-75739, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Univ de la Réunion, Univ des Antilles, UMR 1134, F-75739, Paris, France.,INTS, F-75739, Paris, France.,Laboratoire d'Excellence GR-Ex, F75737, Paris, France
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christophe NGuyen
- Sys2Diag UMR 9005 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184, Montpellier Cedex 4, France
| | - Ricardo Andrez Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Lionel Valera
- Bio-Rad Laboratories, 1682 Rue de la Valsière CS 61003, 34184, Montpellier CEDEX 04, France
| | | | | | - Aurélien Lebreton
- Service d'hématologie biologique, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Franck Molina
- Sys2Diag UMR 9005 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184, Montpellier Cedex 4, France
| | - Violaine Moreau
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ Montpellier, 29, route de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
3
|
Fang X, Tong Y, Tian H, Ning H, Gao X, Yao W. Rapid de novo generation of antigen specific human B cells with expression of Blimp-1 and AID by in vitro immunization. Exp Cell Res 2017; 352:53-62. [PMID: 28153782 DOI: 10.1016/j.yexcr.2017.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/07/2017] [Accepted: 01/29/2017] [Indexed: 02/01/2023]
Abstract
In vitro immunization with antigens and cytokines triggers specific human B-cell response in short periods and is therefore superior to conventional in vivo immunization for antibody development. However, this new technology is limited by low efficiency, poor reproducibility, and requirement of pre-immunized lymphocytes. In this study, we demonstrate a novel method for de novo inducing antigen-specific human B cells in vitro. Unlike previous in vitro immunization of unfractionated PBMCs, we firstly optimized the conditions for inducing monocyte-derived dendritic cells (DCs) to efficiently capture, process, and present antigens. Instead of using the conventional method to activate Th2 cells for in vitro immunization, we succeeded to differentiate naïve CD4+ T cells into T follicular helper (Tfh) cells using antigen-sensitized DCs and cytokine cocktail. We discovered the differentiated T cells expressed ICOS, PD-1, BCL-6, and IL-21 at high levels. After 12 days of T-B co-culture, we observed induced T cells efficiently promoted naïve B cells to differentiate into plasmablasts secreting antigen-specific antibodies, with expression of Blimp-1 and AID related to affinity maturation and class switching. Thus, we established a new co-culture system with naïve lymphocyte populations for de novo acquisition of specifically in vitro immunized B cells potentially for development of therapeutic antibodies, which also provides novel insights into understanding the complex interactions among immune cells in lymph nodes.
Collapse
Affiliation(s)
- Xu Fang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Ning
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Wijkhuisen A, Savatier A, Cordeiro N, Léonetti M. Production of antigen-specific human IgGs by in vitro immunization. BMC Biotechnol 2016; 16:22. [PMID: 26911296 PMCID: PMC4765159 DOI: 10.1186/s12896-016-0253-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/15/2016] [Indexed: 12/14/2022] Open
Abstract
Background We previously developed in vitro immunization based on a fusion protein containing the transcriptional transactivator (Tat) of human immunodeficiency virus and a double domain, called ZZ, derived from protein A of Staphylococcus aureus. In this approach, naïve human peripheral blood mononuclear cells (PBMCs) trigger a specific IgM antibody (Ab) response in the presence of ZZTat. In the present study, we attempted to raise a specific IgG Ab response. Results We found that PBMCs incubated with ZZTat and a mixture containing anti-CD40, IL4 and IL21 secrete anti-Tat IgG Abs in their supernatants, indicating that the cytokine cocktail provides an isotypic switch. Then, we deciphered the Tat determinant involved in the phenomenon and found that it is located in the region 22–57 and that, within this region, the cysteine-rich domain and the basic residues play a crucial role. Finally, we prepared a fusion protein containing a fragment derived from the NY-ESO-1 cancer/testis antigen (Ag) and showed that PBMCs incubated with ZZfNY-ESO-1Tat trigger a specific anti-fNY-ESO-1 IgG Ab response, which demonstrates the possibility of transferring immunizing ability to an Ag unrelated to Tat. Conclusion Our ZZTat-based in vitro immunization approach that offers the possibility to raise an IgG Ab response against NY-ESO-1 might represent a valuable first stage for the generation of fully human IgG specific Abs.
Collapse
Affiliation(s)
- A Wijkhuisen
- University of Paris Diderot, Paris, France. .,CEA, Institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'Immunoanalyse (SPI), 91191, Gif sur Yvette, France.
| | - A Savatier
- CEA, Institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'Immunoanalyse (SPI), 91191, Gif sur Yvette, France
| | - N Cordeiro
- CEA, Institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'Immunoanalyse (SPI), 91191, Gif sur Yvette, France
| | - M Léonetti
- CEA, Institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'Immunoanalyse (SPI), 91191, Gif sur Yvette, France
| |
Collapse
|
5
|
Cordeiro N, Wijkhuisen A, Savatier A, Moulharat N, Ferry G, Léonetti M. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells. J Immunol Methods 2015; 428:37-41. [PMID: 26657944 DOI: 10.1016/j.jim.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.
Collapse
Affiliation(s)
- Nelia Cordeiro
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | | | - Alexandra Savatier
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | - Natacha Moulharat
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Gilles Ferry
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Michel Léonetti
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France.
| |
Collapse
|