1
|
Bartl S, Xie Y, Potluri N, Kesineni R, Hencak K, Cengio LD, Balazs K, Oueslati A, Parth M, Salhat N, Siddu A, Smrzka O, Cicchetti F, Straffler G, Hayden MR, Southwell AL. Reducing huntingtin by immunotherapy delays disease progression in a mouse model of Huntington disease. Neurobiol Dis 2024; 190:106376. [PMID: 38092268 DOI: 10.1016/j.nbd.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023] Open
Abstract
In Huntington disease (HD), the mutant huntingtin (mtHTT) protein is the principal cause of pathological changes that initiate primarily along the cortico-striatal axis. mtHTT is ubiquitously expressed and there is, accordingly, growing recognition that HD is a systemic disorder with functional interplay between the brain and the periphery. We have developed a monoclonal antibody, C6-17, targeting an exposed region of HTT near the aa586 Caspase 6 cleavage site. As recently published, mAB C6-17 can block cell-to-cell propagation of mtHTT in vitro. In order to reduce the burden of the mutant protein in vivo, we queried whether extracellular mtHTT could be therapeutically targeted in YAC128 HD mice. In a series of proof of concept experiments, we found that systemic mAB C6-17 treatment resulted in the distribution of the mAB C6-17 to peripheral and CNS tissues and led to the reduction of HTT protein levels. Compared to CTRL mAB or vehicle treated mice, the mAB C6-17 treated YAC128 animals showed improved body weight and motor behaviors, a delayed progression in motor deficits and reduced striatal EM48 immunoreactivity. These results provide the first proof of concept for the feasibility and therapeutic efficacy of an antibody-based anti-HTT passive immunization approach and suggest this modality as a potential new HD treatment strategy.
Collapse
Affiliation(s)
| | - Yuanyun Xie
- University of Central Florida, Burnett School of Biomedical Sciences, Orlando, FL, United States of America; University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Nalini Potluri
- University of Central Florida, Burnett School of Biomedical Sciences, Orlando, FL, United States of America
| | - Ratnesh Kesineni
- University of Central Florida, Burnett School of Biomedical Sciences, Orlando, FL, United States of America
| | - Katlin Hencak
- University of Central Florida, Burnett School of Biomedical Sciences, Orlando, FL, United States of America
| | - Louisa Dal Cengio
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | | | - Abid Oueslati
- Centre de recherche du CHU - Université Laval, Québec, Canada
| | | | | | - Alberto Siddu
- Centre de recherche du CHU - Université Laval, Québec, Canada
| | | | | | | | - Michael R Hayden
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Amber L Southwell
- University of Central Florida, Burnett School of Biomedical Sciences, Orlando, FL, United States of America.
| |
Collapse
|
2
|
Rodak A, Stadlbauer K, Bobbili MR, Smrzka O, Rüker F, Wozniak Knopp G. Development of a Cytotoxic Antibody-Drug Conjugate Targeting Membrane Immunoglobulin E-Positive Cells. Int J Mol Sci 2023; 24:14997. [PMID: 37834445 PMCID: PMC10573690 DOI: 10.3390/ijms241914997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
High numbers of membrane immunoglobulin E (IgE)-positive cells are characteristic of allergic conditions, atopic dermatitis, or IgE myeloma. Antibodies targeting the extracellular membrane-proximal domain of the membranous IgE-B-cell receptor (BCR) fragment can be used for specific depletion of IgE-BCR-positive cells. In this study, we derivatized such an antibody with a toxin and developed an antibody-drug conjugate (ADC) that showed strong cytotoxicity for an IgE-positive target cell line. Site-specific conjugation with maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl-monomethyl-auristatin E via a newly introduced single cysteine residue was used to prepare a compound with a drug-antibody ratio of 2 and favorable biophysical properties. The antibody was rapidly taken up by the target cells, showing almost complete internalization after 4 h of treatment. Its cytotoxic effect was potentiated upon cross-linking mediated by an anti-human IgG F(ab')2 fragment. Because of its fast internalization and strict target specificity, this antibody-drug conjugate presents a valuable starting point for the further development of an anti-IgE cell-depleting agent, operating by the combined action of receptor cross-linking and toxin-mediated cytotoxicity.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Oskar Smrzka
- Ablevia Biotech GmbH, Maria Jacobi Gasse 1, 1030 Vienna, Austria;
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Gordana Wozniak Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| |
Collapse
|
3
|
Rodak A, Stadlmayr G, Stadlbauer K, Lichtscheidl D, Bobbili MR, Rüker F, Wozniak-Knopp G. Bispecific T-Cell Engagers Targeting Membrane-Bound IgE. Biomedicines 2021; 9:1568. [PMID: 34829798 PMCID: PMC8615095 DOI: 10.3390/biomedicines9111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
The increased incidence of allergies and asthma has sparked interest in IgE, the central player in the allergic response. Interaction with its high-affinity receptor FcεRI leads to sensitization and allergen presentation, extracellular membrane-proximal domain in membrane IgE can act as an antigen receptor on B cells, and the interaction with low-affinity IgE receptor CD23 additionally influences its homeostatic range. Therapeutic anti-IgE antibodies act by the inhibition of IgE functions by interfering with its receptor binding or by the obliteration of IgE-B cells, causing a reduction of serum IgE levels. Fusion proteins of antibody fragments that can act as bispecific T-cell engagers have proven very potent in eliciting cytotoxic T-lymphocyte-mediated killing. We have tested five anti-IgE Fc antibodies, recognizing different epitopes on the membrane-expressed IgE, for the ability to elicit specific T-cell activation when expressed as single-chain Fv fragments fused with anti-CD3ε single-chain antibody. All candidates could specifically stain the cell line, expressing the membrane-bound IgE-Fc and bind to CD3-positive Jurkat cells, and the specific activation of engineered CD3-overexpressing Jurkat cells and non-stimulated CD8-positive cells was demonstrated for 8D6- and ligelizumab-based bispecific antibodies. Thus, such anti-IgE antibodies have the potential to be developed into agents that reduce the serum IgE concentration by lowering the numbers of IgE-secreting cells.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gerhard Stadlmayr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Dominic Lichtscheidl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Experimental, Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gordana Wozniak-Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| |
Collapse
|
4
|
Lertnimitphun P, Zhang W, Fu W, Yang B, Zheng C, Yuan M, Zhou H, Zhang X, Pei W, Lu Y, Xu H. Safranal Alleviated OVA-Induced Asthma Model and Inhibits Mast Cell Activation. Front Immunol 2021; 12:585595. [PMID: 34093515 PMCID: PMC8173045 DOI: 10.3389/fimmu.2021.585595] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Asthma is a chronic and recurring airway disease, which related to mast cell activation. Many compounds derived from Chinese herbal medicine has promising effects on stabilizing mast cells and decreasing inflammatory mediator production. Safranal, one of the active compounds from Crocus sativus, shows many anti-inflammatory properties. In this study, we evaluated the effect of safranal in ovalbumin (OVA)-induced asthma model. Furthermore, we investigate the effectiveness of safranal on stabilizing mast cell and inhibiting the production of inflammatory mediators in passive systemic anaphylaxis (PSA) model. Methods OVA-induced asthma and PSA model were used to evaluate the effect of safranal in vivo. Lung tissues were collected for H&E, TB, IHC, and PAS staining. ELISA were used to determine level of IgE and chemokines (IL-4, IL-5, TNF-α, and IFN-γ). RNA sequencing was used to uncovers genes that safranal regulate. Bone marrow-derived mast cells (BMMCs) were used to investigate the inhibitory effect and mechanism of safranal. Cytokine production (IL-6, TNF-α, and LTC4) and NF-κB and MAPKs signaling pathway were assessed. Results Safranal reduced the level of serum IgE, the number of mast cells in lung tissue were decreased and Th1/Th2 cytokine levels were normalized in OVA-induced asthma model. Furthermore, safranal inhibited BMMCs degranulation and inhibited the production of LTC4, IL-6, and TNF-α. Safranal inhibits NF-κB and MAPKs pathway protein phosphorylation and decreases NF-κB p65, AP-1 nuclear translocation. In the PSA model, safranal reduced the levels of histamine and LTC4 in serum. Conclusions Safranal alleviates OVA-induced asthma, inhibits mast cell activation and PSA reaction. The possible mechanism occurs through the inhibition of the MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Peeraphong Lertnimitphun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Acupuncture and Moxibustion, Huachiew TCM Hospital, Bangkok, Thailand
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Saffron Department and International Trade Department, Shanghai Traditional Chinese Medicine Co., Ltd., Shanghai, China
| | - Weizhong Pei
- Saffron Department and International Trade Department, Shanghai Traditional Chinese Medicine Co., Ltd., Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Schmitt ME, Lutz J, Haase P, Bösl MR, Wienands J, Engels N, Voehringer D. The B-cell antigen receptor of IgE-switched plasma cells regulates memory IgE responses. J Allergy Clin Immunol 2020; 146:642-651.e5. [DOI: 10.1016/j.jaci.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
|
6
|
Okayama Y, Matsumoto H, Odajima H, Takahagi S, Hide M, Okubo K. Roles of omalizumab in various allergic diseases. Allergol Int 2020; 69:167-177. [PMID: 32067933 DOI: 10.1016/j.alit.2020.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
IgE and mast cells play a pivotal role in various allergic diseases, including asthma, allergic rhinitis, and urticaria. Treatment with omalizumab, a monoclonal anti-IgE antibody, has significantly improved control of these allergic diseases and introduced a new era for the management of severe allergic conditions. About 10 years of experience with omalizumab treatment for severe allergic asthma confirmed its effectiveness and safety, reducing symptoms, frequency of reliever use, and severe exacerbations in patients with intractable conditions. Omalizumab is particularly useful in childhood asthma, where atopic conditions often determine clinical courses of asthma. Recently, omalizumab is approved for the treatment of chronic spontaneous urticaria (CSU) with the fixed dose of 300 mg. Although the mechanisms underlying the actions of omalizumab in CSU are not fully clarified, nearly 90% of patients with CSU showed a complete or a partial response to omalizumab treatment. Furthermore, omalizumab is just approved for the treatment of severe Japanese cedar pollinosis (JC) based on the successful results of an add-on study of omalizumab for inadequately controlled severe pollinosis despite antihistamines and nasal corticosteroids. For proper use of omalizumab to treat severe JC, co-administration of antihistamines is necessary, while patients should meet the criteria including strong sensitization to Japanese cedar pollen (≥class 3) and poor control under standard treatment. In the management of severe allergic diseases using omalizumab, issues including cost and concerns about relapse after its discontinuation should be overcome. At the same time, possibilities for application to other intractable allergic diseases should be considered.
Collapse
|
7
|
Affiliation(s)
- Niklas Engels
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
8
|
Vanshylla K, Opazo F, Gronke K, Wienands J, Engels N. The extracellular membrane-proximal domain of membrane-bound IgE restricts B cell activation by limiting B cell antigen receptor surface expression. Eur J Immunol 2017; 48:441-453. [PMID: 29150831 DOI: 10.1002/eji.201747196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/03/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Immunoglobulin E (IgE) antibodies are key mediators of allergic reactions. Due to their potentially harmful anaphylactic properties, their production is tightly regulated. The membrane-bound isoform of IgE (mIgE), which is an integral component of the B cell antigen receptor, has been shown to be critical for the regulation of IgE responses in mice. In primate species including humans, mIgE can be expressed in two isoforms that are produced by alternative splicing of the primary ε Ig heavy chain transcript, and differ in the absence or presence of an extracellular membrane-proximal domain (EMPD) consisting of 52 amino acids. However, the function of the EMPD remains unclear. Here, we demonstrate that the EMPD restricts surface expression of mIgE-containing BCRs in human and murine B cells. The EMPD does not interfere with BCR assembly but acts as an autonomous endoplasmic reticulum retention domain. Limited surface expression of EMPD-containing mIgE-BCRs caused impaired activation of intracellular signaling cascades and hence represents a regulatory mechanism that may control the production of potentially anaphylactic IgE antibodies in primate species.
Collapse
Affiliation(s)
- Kanika Vanshylla
- Institute of Cellular & Molecular Immunology, Unversity Medical Center Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Konrad Gronke
- Institute of Cellular & Molecular Immunology, Unversity Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, Unversity Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, Unversity Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|