Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO
2@Au nanoparticles.
NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022;
41:102522. [PMID:
35032631 DOI:
10.1016/j.nano.2022.102522]
[Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
We developed surface-enhanced Raman scattering-lateral flow immunoassay (SERS-LFIA) biosensor strips based on SiO2@Au nanoparticles (NPs) for the specific and highly sensitive detection of ricin, staphylococcal enterotoxin B (SEB), and botulinum neurotoxin type A (BoNT/A). SiO2@Au NPs were used to prepare SERS tags with useful properties, such as light weight, uniform particle size, good dispersion, and high SERS performance. The detection limit of the SERS-LFIA strips developed herein for ricin, SEB, and BoNT/A was 0.1, 0.05, and 0.1 ng/mL. Their sensitivity was 100-fold higher than that of colloidal gold-LFIA strips, and the same batch of strips had good repeatability. Moreover, the test was completed within 15 min, indicating that the strips are suitable for the rapid and on-site detection of the said toxins. The SERS-LFIA strips based on SiO2@Au NPs developed herein for the detection of toxins are important to the prevention of bioterrorism attacks.
Collapse